Investigation of different flow parameters on air layer drag reduction (ALDR) performance using a hybrid stability analysis and numerical solution of the two-phase flow equations

2020 ◽  
Vol 196 ◽  
pp. 106779
Author(s):  
Mohammad Hossein Montazeri ◽  
Mohammad Mehdi Alishahi
2007 ◽  
Vol 04 (02) ◽  
pp. 299-333 ◽  
Author(s):  
D. ZEIDAN ◽  
A. SLAOUTI ◽  
E. ROMENSKI ◽  
E. F. TORO

We outline an approximate solution for the numerical simulation of two-phase fluid flows with a relative velocity between the two phases. A unified two-phase flow model is proposed for the description of the gas–liquid processes which leads to a system of hyperbolic differential equations in a conservative form. A numerical algorithm based on a splitting approach for the numerical solution of the model is proposed. The associated Riemann problem is solved numerically using Godunov methods of centered-type. Results show the importance of the Riemann problem and of centered schemes in the solution of the two-phase flow problems. In particular, it is demonstrated that the Slope Limiter Centered (SLIC) scheme gives a low numerical dissipation at the contact discontinuities, which makes it suitable for simulations of practical two-phase flow processes.


Author(s):  
Mamta Raju Jotkar ◽  
Daniel Rodriguez ◽  
Bruno Marins Soares

2004 ◽  
Vol 126 (4) ◽  
pp. 528-538 ◽  
Author(s):  
S. Kim ◽  
S. S. Paranjape ◽  
M. Ishii ◽  
J. Kelly

The vertical co-current downward air-water two-phase flow was studied under adiabatic condition in round tube test sections of 25.4-mm and 50.8-mm ID. In flow regime identification, a new approach was employed to minimize the subjective judgment. It was found that the flow regimes in the co-current downward flow strongly depend on the channel size. In addition, various local two-phase flow parameters were acquired by the multi-sensor miniaturized conductivity probe in bubbly flow. Furthermore, the area-averaged data acquired by the impedance void meter were analyzed using the drift flux model. Three different distributions parameters were developed for different ranges of non-dimensional superficial velocity, defined by the ration of total superficial velocity to the drift velocity.


2012 ◽  
Vol 433-440 ◽  
pp. 463-470
Author(s):  
Lei Liu ◽  
Xin Feng Guo ◽  
Qiu Yue Guo ◽  
Hui Qing Fan ◽  
Zhu Hai Zhong

It is significant to make researches on drag reduction in two-phase transport pipeline because two-phase flow has high energy dissipation. API X 52 steel pipe with diameter of 40mm is used in this paper to simulate pipeline with different inclination geometry including horizontal, up-inclined and vertical sections. The up-inclined section has an inclination angle of eight degree. Experiments and theoretical analysis are carried out to study the drag reduction characteristics of gas-liquid two-phase flow in these three sections. The drag reducing agents used here is polyacrylamide. It is found that two-phase drag reduction varies with pipe inclination geometry. The largest drag reduction efficiency occurs in horizontal pipes and which is up to seventy percent. Drag reduction efficiency in up-inclined section is up to sixty percent. Drag reduction in vertical section is the lowest and which can be up to about thirty percent. A mechanistic drag reduction model is proposed to predict drag reduction in gas-liquid two-phase flow. The results predicted are in good agreement with the experiment data.


Sign in / Sign up

Export Citation Format

Share Document