wing geometry
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 29)

H-INDEX

15
(FIVE YEARS 2)

Author(s):  
VENKATA SAI BHANUDEEP GANDLA ◽  
NIRMITH KUMAR MISHRA ◽  
SAI KUMAR ALGAM ◽  
VISHAL YADAV ◽  
Lokesh Reddy Kancharla

In this project, we intend to design a Canard wing-based Unmanned Aerial Vehicle (UAV), which can carry a wide range of missions, providing capabilities to handle our challenges with sophisticated care. Canard-based UAV is the latest trend in aviation technology designed for the use case of providing better maneuverability, which in result gives the UAV new capabilities, such as increased time for data gathering, transferring, and autonomous behavior. The basic disciplines like Aerodynamics, Engineering design, Flight dynamics, Propulsion, and Performance are carried out during the UAV designing process. The proposed methodology applied in this project is weight estimation, initial sizing, aerofoil and wing geometry, fuselage sizing, tail sizing, T/W ratio, aerodynamics, and performance analysis. The design of Canard Based UAV leads to a deeper understanding of the trade-off studies of the UAV and is demonstrated by optimizing for designed missions like surveillance. A drafted sketch is presented at the end of the design phase featuring the selected configurations of major components.


2021 ◽  
Vol 162 (6) ◽  
pp. 293
Author(s):  
Kellen Lawson ◽  
Thayne Currie ◽  
John P. Wisniewski ◽  
Motohide Tamura ◽  
Jean-Charles Augereau ◽  
...  

Abstract We present the first multiwavelength (near-infrared; 1.1–2.4 μm) imaging of HD 36546's debris disk, using the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system coupled with the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS). As a 3–10 Myr old star, HD 36546 presents a rare opportunity to study a debris disk at very early stages. SCExAO/CHARIS imagery resolves the disk over angular separations of ρ ∼ 0.″25–1.″0 (projected separations of rproj ∼ 25–101 au) and enables the first spectrophotometric analysis of the disk. The disk’s brightness appears symmetric between its eastern and western extents, and it exhibits slightly blue near-infrared colors on average (e.g., J−K = −0.4 ± 0.1)—suggesting copious submicron-sized or highly porous grains. Through detailed modeling adopting a Hong scattering phase function (SPF), instead of the more common Henyey–Greenstein function, and using the differential evolution optimization algorithm, we provide an updated schematic of HD 36546's disk. The disk has a shallow radial dust density profile (α in ≈ 1.0 and α out ≈ −1.5), a fiducial radius of r 0 ≈ 82.7 au, an inclination of i ≈ 79.°1, and a position angle of PA ≈ 80.°1. Through spine tracing, we find a spine that is consistent with our modeling, but also with a “swept-back wing” geometry. Finally, we provide constraints on companions, including limiting a companion responsible for a marginal Hipparcos–Gaia acceleration to a projected separation of ≲0.″2 and to a minimum mass of ≲11 M Jup.


Author(s):  
Ashutosh Kumar ◽  
◽  
Raghvendra Gautam ◽  

Objectives: To study a hybrid VTOL- Blended wing body design for its wings and elevons and perform CFD simulations with the wings. The steps for designing wing configuration and Elevon positioning involve different variables giving rise to a large number of design possibilities for a control surface. In the current study methods, have been proposed for the selection of optimized wing configuration and elevons positioning and validated with simulations model. Methods: Meta-heuristic methods like genetic algorithms are used for arriving at favorable solutions and Matlab coding is written for the initial draft of wing geometry, selected geometries are iterated in XFLR5 for stability and control, and later validated with simulations around the fluid domain. Elevons are control surfaces generally installed in tailless aircraft at the wing's trailing edge. It applies to roll and pitching force to wings as it combines the functionality of both pitching and rolling control. Design space was mathematically plotted and solved using MATLAB to decide elevons, wing configuration, and their positions.Findings: Initial selection of wing geometry, aoa, and structural design for maneuverability and stability for the enhanced aerodynamic performance of BWB UAV. In this presented paper drag coefficient of the designed BWB UAV comes out to be precisely around 0.02216 using computational modeling. Variation curve of Lift and drag coefficient with aspect ratio and angle of attack. Post-processing results of pressure forces and velocity profile on Wings accurately validate the proposed method of control surface optimization. Novelty: Designed BWB UAV has increased lift to drag ratio, reduced weight of airframe which improves performance. The Design phase is highly iterative, Through this research paper, an attempt has been made to develop a methodology for selection and investigation of control surfaces against requirements that makes BWB UAV more helpful for practical use and increasing the lift and endurance efficiency of the hybrid VTOL- Blended wing body aircraft.


Author(s):  
Vishu K. Oza ◽  
Hardik R. Vala

The work in this paper deals with reconstructing and optimizing the wing geometry of an Unmanned Combat Aerial Vehicle for improved performance and reviewing the impact of the modification on flight parameters in a steady flight. The behavior of airfoils at planned flight conditions under I.S.A. is checked in XFLR5 software. Following up by 2-D CFD and boundary layer analysis of former and new airfoil, dimensions of the wing are re-developed, keeping the fuselage and tail structure same. The existing wing and the optimized wing design is analyzed by Vortex Lattice Method and Triangular Panel Method, with an objective to make the shape of the wing aerodynamically suitable for an increased Lift to Drag ratio and thereby minimizing drag coefficients.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3641
Author(s):  
Sidaard Gunasekaran ◽  
Aaron Altman

Correlations were found between the aerodynamic efficiency and the mean and fluctuating quantities in the far wake of a wall-to-wall SD7003 model and an AR 4 flat plate. This correlation was described algebraically by modeling the wake signature as a function of wing geometry and initial conditions. The model was benchmarked against experimental results to elicit the wing performance as a function of angle of attack by interrogating the wake. In these algebraic models, the drag coefficient along with other initial conditions of the turbulent generator (either airfoil or wing) were used to reconstruct the Reynolds Stress distribution and the momentum deficit distribution in the turbulent wake. Experiments were undertaken at the United States Air Force Research Labs Horizontal Free Surface Water Tunnel (AFRL/HFWT). These experiments build on previous results obtained at the University of Dayton Low Speed Wind Tunnel (UD-LSWT) on a cylinder, an AR 7 SD7062 wing, and a small remote control twin motor aircraft. The Reynolds stress and the momentum deficit of the turbulent generators were experimentally determined using Particle Image Velocimetry (PIV) with a minimum of 1000 image pairs averaged at each condition. The variation of an empirical factor (γ) used to match the Reynolds stress and momentum deficit distributions showed striking correlation to the variation of drag and aerodynamic efficiency of the turbulent generator. This correlation suggests that the wing performance information is preserved in the free shear layer 10 chord lengths downstream of the trailing edge (TE) of the wing irrespective of the dimensionality of the flow.


2021 ◽  
Author(s):  
Michael C. F. Kwong

Aircraft wing geometry morphing is a technology that has seen recent interest due to demand for aircraft to improve aerodynamic performance for fuel saving. One proposed idea to alter wing geometry is by a modular morphing wing designed through a discretization method and constructed using variable geometry truss mechanisms (VGTM). For each morphing maneuver, there are sixteen possible actuation paths for each VGTM module, and thus offering a three module morphing wing to have a total of 16(to the power of 3) permutations of actuation paths for one morphing maneuver. Focused on longitudinal static stability, critical parameters and aircraft stability theory, this thesis proposes a method to find an optimal actuation path for a designated maneuver iteratively. A case study of a three module morphing wing demonstrated the actuation path selection process. Numerically, different actuation paths had different levels of longitudinal static stability; these paths were drawn in CATIA and were visually verified.


2021 ◽  
Author(s):  
Michael C. F. Kwong

Aircraft wing geometry morphing is a technology that has seen recent interest due to demand for aircraft to improve aerodynamic performance for fuel saving. One proposed idea to alter wing geometry is by a modular morphing wing designed through a discretization method and constructed using variable geometry truss mechanisms (VGTM). For each morphing maneuver, there are sixteen possible actuation paths for each VGTM module, and thus offering a three module morphing wing to have a total of 16(to the power of 3) permutations of actuation paths for one morphing maneuver. Focused on longitudinal static stability, critical parameters and aircraft stability theory, this thesis proposes a method to find an optimal actuation path for a designated maneuver iteratively. A case study of a three module morphing wing demonstrated the actuation path selection process. Numerically, different actuation paths had different levels of longitudinal static stability; these paths were drawn in CATIA and were visually verified.


2021 ◽  
Vol 80 (1) ◽  
pp. 81-88
Author(s):  
Leidy Cortés-Suarez ◽  
Yesica S. Durango ◽  
Giovan F. Gómez

Sexual dimorphism in flies has been evidenced in classical morphological characters, but little is known about the differentiation in wing geometry, a multivariate character highly controlled at the genetic level that influences the flight and impacts its life history and can be analyzed through geometric morphometrics. Here, we evaluated sexual dimorphism in the wing geometry of Musca domestica L., a cosmopolitan synanthropic fly. Specimens from Colombia were used for wing mounting, photography, and landmark-based geometric morphometric analysis. We found significant differences between male and female specimens in wing size and shape. Particularly, cross-validated classification based on wing shape resulted in high scores (90%) of correct sex attribution. The influence of wing geometry differences on the flight performance and life history in this species remains unknown.


2021 ◽  
pp. 1-17
Author(s):  
B. Nugroho ◽  
J. Brett ◽  
B.T. Bleckly ◽  
R.C. Chin

ABSTRACT Unmanned Combat Aerial Vehicles (UCAVs) are believed by many to be the future of aerial strike/reconnaissance capability. This belief led to the design of the UCAV 1303 by Boeing Phantom Works and the US Airforce Lab in the late 1990s. Because UCAV 1303 is expected to take on a wide range of mission roles that are risky for human pilots, it needs to be highly adaptable. Geometric morphing can provide such adaptability and allow the UCAV 1303 to optimise its physical feature mid-flight to increase the lift-to-drag ratio, manoeuvrability, cruise distance, flight control, etc. This capability is extremely beneficial since it will enable the UCAV to reconcile conflicting mission requirements (e.g. loiter and dash within the same mission). In this study, we conduct several modifications to the wing geometry of UCAV 1303 via Computational Fluid Dynamics (CFD) to analyse its aerodynamic characteristics produced by a range of different wing geometric morphs. Here we look into two specific geometric morphing wings: linear twists on one of the wings and linear twists at both wings (wash-in and washout). A baseline CFD of the UCAV 1303 without any wing morphing is validated against published wind tunnel data, before proceeding to simulate morphing wing configurations. The results show that geometric morphing wing influences the UCAV-1303 aerodynamic characteristics significantly, improving the coefficient of lift and drag, pitching moment and rolling moment.


Sign in / Sign up

Export Citation Format

Share Document