A DES-based study of the flow around the self-propelled DARPA Suboff working in deep immersion and beneath the free-surface

2022 ◽  
Vol 244 ◽  
pp. 110358
Author(s):  
Adrian Lungu
Keyword(s):  
2021 ◽  
Author(s):  
Kenshiro Takahashi ◽  
Takayuki Mori

Abstract This study is based on previous works in a series of numerical studies on submarine hydrodynamics, which involved developing a computational fluid dynamics method to estimate the self-propulsive performance of underwater vehicles. Herein, the Defense Advanced Research Projects Agency SUBOFF submarine model was adopted as a benchmark. The computational modeling applied was based on the Reynolds-averaged Navier-Stokes turbulence model. A body-force propeller method was adopted to model the propulsion. The self-propulsive performance was verified via mesh refinement and validated by comparing the computational solutions with the results obtained from the experiments. The effect of the Reynolds number on the self-propulsive performance was investigated by varying the positions of the stern planes, while the free surface effect was determined by varying the Froude number (Fr) via the volume of fluid method. The computed Taylor wake fraction (w) and hull efficiency (ηH) depended on the Reynolds number as it decreased monotonically. The w and thrust deduction fraction (t) for the model of aft-fitted stern planes were approximately 3–7% and 8–10% higher than those of the baseline and fore-fitted stern planes, respectively. The differences in ηH between the models were insignificant. Regarding the free surface effects, the computations of w, t, and ηH generally decreased with Fr, thus exhibiting several humps and hollows. The computed upward suction force and pitching moment varied from negative to positive and vice versa, depending on Fr.


1988 ◽  
Vol 32 (01) ◽  
pp. 70-79
Author(s):  
W. Neu ◽  
P. Mitra ◽  
J. Schetz

Measurements were performed in the turbulent wake of a propeller-driven axisymmetric body with a plane of symmetry. A flat plate strut was attached to the upper surface of the axisymmetric body, giving a configuration like that of a SWATH-type ship, with the free surface replaced by the plane of symmetry. All mean flow and turbulent flow parameters were measured at three streamwise stations. The measurements were performed for the self-propelled condition and 100 percent over-thrust condition. In the far wake, the center of the wake was found to migrate towards the plane of symmetry. Some interactions were noted between the wakes of the propeller-driven axisymmetric body and that of the flat plate strut—yielding lower axial velocities, higher turbulence intensities and larger static pressure changes compared to regions free of such interference. Comparisons of these effects in the self-propelled case, 100 percent over-thrust case and a previous unpropelled case are given. Spectral measurements were also performed in both near-wake and far-wake regions.


1982 ◽  
Vol 25 (8) ◽  
pp. 721-725
Author(s):  
L. P. Grankina ◽  
V. I. Lozovoi ◽  
E. F. Ryzhkova ◽  
V. I. Ryzhkov

1973 ◽  
Vol 74 (3) ◽  
pp. 529-538 ◽  
Author(s):  
Eveline A. Johnstone ◽  
A. G. Mackie

AbstractLagrangian coordinates are used in conjunction with the self-similarity hypothesis in order to examine the problem of the vertical entry at constant speed of a wedge and also of a cone into an incompressible fluid initially at rest. Certain known properties of the free surface are recovered in a very direct and simple manner and new exact results concerning the inclination of the free surface and the angle of contact with the rigid surface are obtained.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 840
Author(s):  
Liaochao Song ◽  
Jun Deng ◽  
Wangru Wei

Self-aerated flows in flat chutes are encountered downstream of the bottom outlet, in spillways with a small slope and in storm waterways. In the present study, the development of self-aeration in flat chute flow is described and new experiments are performed in a long flat chute with a pressure outlet for different flow discharge rates. The distribution of air concentration, time mean velocity and velocity fluctuation in flow direction in the self-aerated developing region—where air bubbles do not diffuse next to the channel bottom—were measured and analyzed. The region of self-aeration from free surface was about 27.16% to 51.85% of the water depth in the present study. The analysis results revealed that the maximum distance of air bubble diffusion to the channel bottom increased with the development of self-aeration along the flow direction. This indicates that for flat chute flow, the process of air bubble diffusion from free surface to channel bottom was relatively long. Cross-section velocities increased along the flow direction in the self-aerated developing region, and this trend was much more remarkable in the area near water free surface. The velocity fluctuations in flow direction in cross-sections flattened and increased with the development of self-aerated flow. Higher velocity fluctuations in flow direction corresponded to the presence of much stronger turbulence, which enhanced air bubble diffusion from the water free surface to channel bottom along the flow direction.


2019 ◽  
Vol 42 ◽  
Author(s):  
Lucio Tonello ◽  
Luca Giacobbi ◽  
Alberto Pettenon ◽  
Alessandro Scuotto ◽  
Massimo Cocchi ◽  
...  

AbstractAutism spectrum disorder (ASD) subjects can present temporary behaviors of acute agitation and aggressiveness, named problem behaviors. They have been shown to be consistent with the self-organized criticality (SOC), a model wherein occasionally occurring “catastrophic events” are necessary in order to maintain a self-organized “critical equilibrium.” The SOC can represent the psychopathology network structures and additionally suggests that they can be considered as self-organized systems.


Author(s):  
M. Kessel ◽  
R. MacColl

The major protein of the blue-green algae is the biliprotein, C-phycocyanin (Amax = 620 nm), which is presumed to exist in the cell in the form of distinct aggregates called phycobilisomes. The self-assembly of C-phycocyanin from monomer to hexamer has been extensively studied, but the proposed next step in the assembly of a phycobilisome, the formation of 19s subunits, is completely unknown. We have used electron microscopy and analytical ultracentrifugation in combination with a method for rapid and gentle extraction of phycocyanin to study its subunit structure and assembly.To establish the existence of phycobilisomes, cells of P. boryanum in the log phase of growth, growing at a light intensity of 200 foot candles, were fixed in 2% glutaraldehyde in 0.1M cacodylate buffer, pH 7.0, for 3 hours at 4°C. The cells were post-fixed in 1% OsO4 in the same buffer overnight. Material was stained for 1 hour in uranyl acetate (1%), dehydrated and embedded in araldite and examined in thin sections.


Author(s):  
Jin Young Kim ◽  
R. E. Hummel ◽  
R. T. DeHoff

Gold thin film metallizations in microelectronic circuits have a distinct advantage over those consisting of aluminum because they are less susceptible to electromigration. When electromigration is no longer the principal failure mechanism, other failure mechanisms caused by d.c. stressing might become important. In gold thin-film metallizations, grain boundary grooving is the principal failure mechanism.Previous studies have shown that grain boundary grooving in gold films can be prevented by an indium underlay between the substrate and gold. The beneficial effect of the In/Au composite film is mainly due to roughening of the surface of the gold films, redistribution of indium on the gold films and formation of In2O3 on the free surface and along the grain boundaries of the gold films during air annealing.


Author(s):  
Xiaorong Zhu ◽  
Richard McVeigh ◽  
Bijan K. Ghosh

A mutant of Bacillus licheniformis 749/C, NM 105 exhibits some notable properties, e.g., arrest of alkaline phosphatase secretion and overexpression and hypersecretion of RS protein. Although RS is known to be widely distributed in many microbes, it is rarely found, with a few exceptions, in laboratory cultures of microorganisms. RS protein is a structural protein and has the unusual properties to form aggregate. This characteristic may have been responsible for the self assembly of RS into regular tetragonal structures. Another uncommon characteristic of RS is that enhanced synthesis and secretion which occurs when the cells cease to grow. Assembled RS protein with a tetragonal structure is not seen inside cells at any stage of cell growth including cells in the stationary phase of growth. Gel electrophoresis of the culture supernatant shows a very large amount of RS protein in the stationary culture of the B. licheniformis. It seems, Therefore, that the RS protein is cotranslationally secreted and self assembled on the envelope surface.


Sign in / Sign up

Export Citation Format

Share Document