An analytical solution for nonlinear vibration of functionally graded porous micropipes conveying fluid in damping medium

2022 ◽  
Vol 245 ◽  
pp. 110482
Author(s):  
Mohammad Ali Sabahi ◽  
Ali Reza Saidi ◽  
Rasoul Khodabakhsh
2021 ◽  
Vol 37 ◽  
pp. 318-326
Author(s):  
Yuzhen Zhao ◽  
Dike Hu ◽  
Song Wu ◽  
Xinjun Long ◽  
Yongshou Liu

Abstract In this paper, the dynamics of axially functionally graded (AFG) conical pipes conveying fluid are analyzed. The materials are distributed along the conical pipe axis as a volume fraction function. Either the elastic modulus or the density of the AFG conical pipe is assumed to vary from the inlet to the outlet. The governing equation of the AFG conical pipe is derived using the Hamiltonian principle and solved by the differential quadrature method. The effects of the volume fraction index, volume fraction function type and reduction factor on the natural frequency and critical velocity are analyzed. It is found that for a power function volume fraction type, the natural frequency and critical velocity increase with increasing volume fraction index and clearly increase when the volume fraction index is within the range (0, 10). For an exponential function volume fraction type, the natural frequency and critical velocity change rapidly within the range (−10, 10), besides the above range the relationship between the natural frequency, critical velocity and volume fraction index is approximate of little change. The natural frequency and critical velocity decrease linearly with increasing reduction factor.


Sign in / Sign up

Export Citation Format

Share Document