Effects of sea surface temperature on tuna catch: Evidence from countries in the Eastern Pacific Ocean

2021 ◽  
Vol 209 ◽  
pp. 105657
Author(s):  
Hanny John P. Mediodia
2015 ◽  
Vol 12 (23) ◽  
pp. 7315-7329 ◽  
Author(s):  
C. Walker Brown ◽  
J. Boutin ◽  
L. Merlivat

Abstract. Complex oceanic circulation and air–sea interaction make the eastern tropical Pacific Ocean (ETPO) a highly variable source of CO2 to the atmosphere. Although the scientific community have amassed 70 000 surface fugacities of carbon dioxide (fCO2) data points within the ETPO region over the past 25 years, the spatial and temporal resolution of this data set is insufficient to fully quantify the seasonal to interannual variability of the region, a region where fCO2 has been observed to fluctuate by > 300 μatm. Upwelling and rainfall events dominate the surface physical and chemical characteristics of the ETPO, with both yielding unique signatures in sea surface temperature and salinity. Thus, we explore the potential of using a statistical description of fCO2 within sea-surface salinity–temperature space. These SSS/SST relationships are based on in situ surface ocean CO2 atlas (SOCAT) data collected within the ETPO. This statistical description is then applied to high-resolution (0.25°) Soil Moisture and Ocean Salinity (SMOS) sea surface salinity (SSS) and Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) sea surface temperature (SST) in order to compute regional fCO2. As a result, we are able to resolve fCO2 at sufficiently high resolution to elucidate the influence that various physical processes have on the fCO2 of the surface ETPO. Normalised (to 2014) oceanic fCO2 between July 2010 and June 2014 within the entire ETPO was 39 (±10.7) μatm supersaturated with respect to 2014 atmospheric partial pressures, and featured a CO2 outgassing of 1.51 (±0.41) mmol m−2 d−1. Values of fCO2 within the ETPO were found to be broadly split between the Gulf of Panama region and the rest of the tropical eastern Pacific Ocean. The northwest, central and offshore regions were supersaturated, with wintertime wind-jet-driven upwelling found to constitute the first-order control on fCO2 values. This contrasts with the southeastern/Gulf of Panama region, where heavy rainfall combined with rapid stratification of the upper water column act to dilute dissolved inorganic carbon, and yield fCO2 values undersaturated with respect to atmospheric fugacities of CO2.


Author(s):  
Diaz Juan Navia ◽  
Diaz Juan Navia ◽  
Bolaños Nancy Villegas ◽  
Bolaños Nancy Villegas ◽  
Igor Malikov ◽  
...  

Sea Surface Temperature Anomalies (SSTA), in four coastal hydrographic stations of Colombian Pacific Ocean, were analyzed. The selected hydrographic stations were: Tumaco (1°48'N-78°45'W), Gorgona island (2°58'N-78°11'W), Solano Bay (6°13'N-77°24'W) and Malpelo island (4°0'N-81°36'W). SSTA time series for 1960-2015 were calculated from monthly Sea Surface Temperature obtained from International Comprehensive Ocean Atmosphere Data Set (ICOADS). SSTA time series, Oceanic Nino Index (ONI), Pacific Decadal Oscillation index (PDO), Arctic Oscillation index (AO) and sunspots number (associated to solar activity), were compared. It was found that the SSTA absolute minimum has occurred in Tumaco (-3.93°C) in March 2009, in Gorgona (-3.71°C) in October 2007, in Solano Bay (-4.23°C) in April 2014 and Malpelo (-4.21°C) in December 2005. The SSTA absolute maximum was observed in Tumaco (3.45°C) in January 2002, in Gorgona (5.01°C) in July 1978, in Solano Bay (5.27°C) in March 1998 and Malpelo (3.64°C) in July 2015. A high correlation between SST and ONI in large part of study period, followed by a good correlation with PDO, was identified. The AO and SSTA have showed an inverse relationship in some periods. Solar Cycle has showed to be a modulator of behavior of SSTA in the selected stations. It was determined that extreme values of SST are related to the analyzed large scale oscillations.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 424
Author(s):  
Yinlan Chen ◽  
Li Yan ◽  
Gen Li ◽  
Jianjun Xu ◽  
Jingchao Long ◽  
...  

In the recent four decades, there were three record-breaking El Niño events: 1982/1983, 1997/1998, and 2015/2016 events. A double intertropical convergence zone (ITCZ) pattern distinctively emerges over the eastern Pacific Ocean during boreal spring. Based on reanalysis (ERA-Interim) during 1979–2018, this study examines how these three extreme El Niños modulate such double ITCZs. The 1982/1983 and 1997/1998 El Niños moved both northern and southern ITCZs equatorward to form an individual and broad equatorial ITCZ. In contrast, the regulation of 2015/2016 El Niño was unique with a strengthened southern ITCZ to form a symmetric double-ITCZ. The above differences can be attributed to the different meridional structures of sea surface temperatures (SSTs). For the 1982/1983 and 1997/1998 El Niños, there was a meridionally symmetric structure of SST warming with a maximum at the equator. While for 2015/2016 El Niño, there was a meridionally symmetric structure of SST warming with a minimum at the equator.


2022 ◽  
Author(s):  
Hector Luis D’Antoni ◽  
Lidia Susana Burry ◽  
Patricia Irene Palacio ◽  
Matilde Elena Trivi ◽  
Mariano Somoza

Sign in / Sign up

Export Citation Format

Share Document