scholarly journals Simultaneous light emission and detection of InGaN/GaN multiple quantum well diodes for in-plane visible light communication

2017 ◽  
Vol 387 ◽  
pp. 440-445 ◽  
Author(s):  
Yongjin Wang ◽  
Yin Xu ◽  
Yongchao Yang ◽  
Xumin Gao ◽  
Bingcheng Zhu ◽  
...  
Vacuum ◽  
2020 ◽  
Vol 182 ◽  
pp. 109669
Author(s):  
Chongchong Zhao ◽  
Xiaokun Yang ◽  
Bin Wei ◽  
Jie Liu ◽  
Rongrong Chen ◽  
...  

2020 ◽  
Vol 15 (7) ◽  
pp. 909-916
Author(s):  
Haitao Chi ◽  
Yu Du ◽  
Gongyu Li

The key to achieving high-speed and high-quality visible light communication is to increase the modulation speed of Light-Emitting Diode (LED). Therefore, in this study, the influence of the Composite Mechanism of Carrier (CMC) on the modulation speed of LED is studied by designing different structures of the InGaN Multi-quantum-well (MQW) LED active region. Because the carrier subspace waves function of narrow quantum well LED overlaps more frequently and the electron leakage effect is more significant, the compound rate is faster and the modulation bandwidth is higher. InGaN quantum barrier LED with a content of 1% can increase the weight of radiation recombination, which makes the modulation bandwidth higher than GaN quantum barrier LEDs; when the in content is 5%, electron leakage and Auger recombination have a dominant position. Moreover, because these two compounding mechanisms have a fast compounding rate, the modulation bandwidth is significantly increased. Then the 405 nm laser-excited photoluminescence (PL) is introduced to analyze the carrier dynamics in the LED and obtain the related processes of carrier distribution and transport. The proposed carrier microscopic model can well explain change characteristics of the PL luminescence peak, luminous intensity, and half-height width of InGaN/GaN MQW LED with different excitation wavelengths. At low temperature, the PL peak of the InGaN/GaN quantum well LED redshifts with the increase of temperature, because the weakly bound carrier transfers the obtained energy to the deeply bound energy level of high In content.


2016 ◽  
Vol 24 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Q. Zhou ◽  
M. Xu ◽  
H. Wang

In recent years, GaN-based light-emitting diode (LED) has been widely used in various applications, such as RGB lighting system, full-colour display and visible-light communication. However, the internal quantum efficiency (IQE) of green LEDs is significantly lower than that of other visible spectrum LED. This phenomenon is called “green gap”. This paper briefly describes the physical mechanism of the low IQE for InGaN/GaN multiple quantum well (MQW) green LED at first. The IQE of green LED is limited by the defects and the internal electric field in MQW. Subsequently, we discuss the recent progress in improving the IQE of green LED in detail. These strategies can be divided into two categories. Some of these methods were proposed to enhance crystal quality of InGaN/GaN MQW with high In composition and low density of defects by modifying the growth conditions. Other methods focused on increasing electron-hole wave function overlap by eliminating the polarization effect.


Sign in / Sign up

Export Citation Format

Share Document