Integrated dual-color stimulated emission depletion (STED) microscopy and fluorescence emission difference (FED) microscopy

2018 ◽  
Vol 423 ◽  
pp. 167-174 ◽  
Author(s):  
Wensheng Wang ◽  
Guangyuan Zhao ◽  
Cuifang Kuang ◽  
Liang Xu ◽  
Shaocong Liu ◽  
...  
2019 ◽  
Vol 52 (41) ◽  
pp. 415108
Author(s):  
Zhi-Jun Luo ◽  
Ya-Nan Liu ◽  
Meng-Lin Chen ◽  
Zong-Song Gan ◽  
Chang-Sheng Xie

2016 ◽  
Vol 7 (10) ◽  
pp. 6551-6562 ◽  
Author(s):  
Aisling Byrne ◽  
Christopher S. Burke ◽  
Tia E. Keyes

Using precision peptide targeting to discrete cell organelles, it is demonstrated that Ru(ii) polypyridyl complexes are highly effective probes for stimulated emission depletion microscopy.


2018 ◽  
Author(s):  
Mengfei Gao ◽  
Riccardo Maraspini ◽  
Oliver Beutel ◽  
Amin Zehtabian ◽  
Britta Eickholt ◽  
...  

AbstractStimulated emission depletion (STED) microscopy is routinely used to resolve the ultra-structure of cells with a ∼10-fold higher resolution compared to diffraction limited imaging. While STED microscopy is based on preparing the excited state of fluorescent probes with light, the recently developed expansion microscopy (ExM) provides sub-diffraction resolution by physically enlarging the sample before microscopy. Expansion of fixed cells by crosslinking and swelling of hydrogels easily enlarges the sample ∼4-fold and hence increases the effective optical resolution by this factor. To overcome the current limits of these complimentary approaches, we here combined ExM with STED (ExSTED) and demonstrate an increase in resolution of up to 30-fold compared to conventional microscopy (<10 nm lateral and ∼50 nm isotropic). While the increase in resolution is straight forward, we found that high fidelity labelling via multi-epitopes is required to obtain emitter densities that allow to resolve ultra-structural details with ExSTED. Our work provides a robust template for super resolution microscopy of entire cells in the ten nanometer range.


Microscopy ◽  
2020 ◽  
Author(s):  
Jafar H Ghithan ◽  
Jennifer M Noel ◽  
Thomas J Roussel ◽  
Maureen A McCall ◽  
Bruce W Alphenaar ◽  
...  

Abstract Important breakthroughs in far-field imaging techniques have been made since the first demonstrations of stimulated emission depletion (STED) microscopy. To date, the most straightforward and widespread deployment of STED microscopy has used continuous wave (CW) laser beams for both the excitation and depletion of fluorescence emission. A major drawback of the CW STED imaging technique has been photobleaching effects due to the high optical power needed in the depletion beam to reach sub-diffraction resolution. To overcome this hurdle, we have applied a synchronous detection approach based on modulating the excitation laser beam, while keeping the depletion beam at CW operation, and frequency filtering the collected signal with a lock-in amplifier to record solely the super-resolved fluorescence emission. We demonstrate here that such approach allows an important reduction in the optical power of both laser beams that leads to measurable decreases of photobleaching effects in STED microscopy. We report super-resolution images with relatively low powers for both the excitation and depletion beams. In addition, typical unwanted scattering effects and background signal generated from the depletion beam, which invariably arises from mismatches in refractive-index in the material composing the sample, are largely reduced by using the modulated STED approach. The capability of acquiring super-resolution images with relatively low power is quite relevant for studying a variety of samples, but particularly important for biological species as exemplified in this work.


2017 ◽  
Vol 844 ◽  
pp. 012033
Author(s):  
Wen-sheng Wang ◽  
Cui-fang Kuang ◽  
Shao-cong Liu ◽  
Shi-yi Sun ◽  
Xu Liu

Sign in / Sign up

Export Citation Format

Share Document