Performance enhancement of M-ary pulse-position modulation for a wavelength division multiplexing free-space optical systems impaired by interchannel crosstalk, pointing error, and ASE noise

2020 ◽  
Vol 475 ◽  
pp. 126219
Author(s):  
Ebrahim E. Elsayed ◽  
Bedir B. Yousif
2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Jayson K. Jayabarathan ◽  
S. Robinson

AbstractFree space optical (FSO) communication has fascinated a lot of attention for a variety of applications in telecommunication area. It is dream of every researcher and telecommunication society to make it a real alternative solution for the last mile problem, to replace fiber optics. FSO is much favored because of its low maintenance cost and deployment time. Pointing error is one of the main challenges in FSO communication system which affects its performance especially at high data links that leads to significant performance degradation. In this paper, the impact of pointing error for multi-beam Hybrid Wavelength Division Multiplexing (HWDM) FSO system is investigated. Then the effect of link distance and Bit Error Rate (BER) are estimated by accounting the pointing error and atmospheric attenuation. The effect of change of link distance is examined while changing the number of beams between the transmitter and receiver as well. In this attempt, the HWDM system is considered by combining eight Dense Wavelength Division Multiplexing (DWDM) channels and four Coarse Wavelength Division Multiplexing (CWDM) channels. In addition, the influences of BER and receiver sensitivity are analyzed for the proposed system by incorporating Erbium Doped Fiber Amplifier (EDFA) at the receiver end. The data rate 2.5 Gbps is considered for both CWDM and DWDM channels for investigation.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Bentahar Attaouia ◽  
Kandouci Malika ◽  
Ghouali Samir

AbstractThis work is focused to carry out the investigation of wavelength division multiplexing (WDM) approach on free space optical (FSO) transmission systems using Erbium Ytterbium Doped Waveguide Amplifier (EYDWA) integrated as post-or pre-amplifier for extending the reach to 30 Km for the cost-effective implementation of FSO system considering weather conditions. Furthermore, the performance of proposed FSO-wavelength division multiplexing (WDM) system is also evaluated on the effect of varying the FSO range and results are reported in terms of Q factor, BER, and eye diagrams. It has been found that, under clear rain the post-amplification was performed and was able to reach transmission distance over 27 Km, whereas, the FSO distance has been limited at 19.5 Km by using pre-amplification.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kavitha Thandapani ◽  
Maheswaran Gopalswamy ◽  
Sravani Jagarlamudi ◽  
Naveen Babu Sriram

Abstract Free Space Optical (FSO) communication has evolved as a feasible technique for wireless implementations which offers higher bandwidth capacities over various wavelengths and refers to the transmission of modulated visible beams through atmosphere in order to communicate. Wavelength Division Multiplexing (WDM) is a technology that multiplexes numerous carrier signals onto single fiber using nonidentical wavelengths and enables the efficiency of bandwidth and expanded data rate. Multiple Input Multiple Output (MIMO) is implemented to improve the quality and performance of free space optical communication in various atmospheric conditions. In this paper, a WDM-based FSO communication system is being implemented that benefits from MIMO which receives multiple copies of the signal at receiver that are independent and analyzed for various streams of data in MIMO i.e. 2 × 2, 4 × 4, 8 × 8. Various factors like BER, Quality Factor are analyzed for the WDM-based FSO communication with MIMO using the OptiSystem for various data streams of MIMO under different atmospheric conditions.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Rupinder Kaur ◽  
Charanjit Singh ◽  
Rajbir Kaur

Abstract Hybrid wavelength-division-multiplexing (WDM) and free space optical (FSO) access networks are getting great attention due to numerous advantages. In this work, hybrid WDM-FSO system is demonstrated for 55 km at capacity of 5 × 10 Gbit/s using compressed spectrum return to zero (CSRZ) WDM-FSO in downstream and nonreturn to zero (NRZ) in upstream for demonstrating transmitter diversity which inturn decrease the interchannel interference. For the suppression of Rayleigh backscattering (RB) interferometric beat noise, bidirectional cyclic multiplexer is employed. Cyclic multiplexer provide λ 1 to λ 5 wavelengths for optical line terminal (OLT) to ONU transmission and λ 2 to λ 6 for ONU to OLT transmission. Insertion losses of each component are considered and in the end, power budget is also calculated. Results revealed that FSO length of 780–1050 m are obtained using various WDM-FSO downstream signals and their power budget, redundant budget, maximum distance, and insertion losses also calculated.


2012 ◽  
Vol 60 (12) ◽  
pp. 3797-3807 ◽  
Author(s):  
Ehsan Bayaki ◽  
Diomidis S. Michalopoulos ◽  
Robert Schober

Sign in / Sign up

Export Citation Format

Share Document