Observation of the rotational Doppler shift of the ring Airy Gaussian vortex beam

2021 ◽  
pp. 126900
Author(s):  
Song Qiu ◽  
Yuan Ren ◽  
Qimeng Sha ◽  
You Ding ◽  
Chen Wang ◽  
...  
Keyword(s):  
1989 ◽  
Author(s):  
J. DRAKES ◽  
R. HIERS ◽  
R. REED

1975 ◽  
Vol 41 (2) ◽  
pp. 596-600 ◽  
Author(s):  
L. R. Prewitt ◽  
D. R. Jacobson ◽  
R. W. Hemken ◽  
R. H. Hatton

1974 ◽  
Vol 52 (23) ◽  
pp. 2329-2342 ◽  
Author(s):  
R. W. Ollerhead ◽  
D. C. Kean ◽  
R. M. Gorman ◽  
M. B. Thomson

All levels below 5.2 MeV in 25Mg have been studied using the reaction 25Mg(p, p′γ). In-elastically scattered protons were detected in an annular surface barrier detector located at 180°; coincidence gamma-ray spectra were obtained at Ge (Li) detector angles of 90°, 45°, and 135°. Level energies were determined from unshifted gamma-ray energies recorded in the 90° spectra. Lifetimes were obtained from the attenuated Doppler shift of gamma-ray energies recorded in spectra taken at forward and backward angles. Branching ratios were deduced from the combined data of all three angles. The identification of levels as members of rotational bands is discussed, and transition strengths deduced from the present measurements are compared with predictions of the simple rotational model.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 577
Author(s):  
Luca Schirru ◽  
Tonino Pisanu ◽  
Angelo Podda

Space debris is a term for all human-made objects orbiting the Earth or reentering the atmosphere. The population of space debris is continuously growing and it represents a potential issue for active satellites and spacecraft. New collisions and fragmentation could exponentially increase the amount of debris and so the level of risk represented by these objects. The principal technique used for the debris monitoring, in the Low Earth Orbit (LEO) between 200 km and 2000 km of altitude, is based on radar systems. The BIRALET system represents one of the main Italian radars involved in resident space objects observations. It is a bi-static radar, which operates in the P-band at 410–415 MHz, that uses the Sardinia Radio Telescope as receiver. In this paper, a detailed description of the new ad hoc back-end developed for the BIRALET radar, with the aim to perform slant-range and Doppler shift measurements, is presented. The new system was successfully tested in several validation measurement campaigns, the results of which are reported and discussed.


Sign in / Sign up

Export Citation Format

Share Document