scholarly journals The Ad Hoc Back-End of the BIRALET Radar to Measure Slant-Range and Doppler Shift of Resident Space Objects

Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 577
Author(s):  
Luca Schirru ◽  
Tonino Pisanu ◽  
Angelo Podda

Space debris is a term for all human-made objects orbiting the Earth or reentering the atmosphere. The population of space debris is continuously growing and it represents a potential issue for active satellites and spacecraft. New collisions and fragmentation could exponentially increase the amount of debris and so the level of risk represented by these objects. The principal technique used for the debris monitoring, in the Low Earth Orbit (LEO) between 200 km and 2000 km of altitude, is based on radar systems. The BIRALET system represents one of the main Italian radars involved in resident space objects observations. It is a bi-static radar, which operates in the P-band at 410–415 MHz, that uses the Sardinia Radio Telescope as receiver. In this paper, a detailed description of the new ad hoc back-end developed for the BIRALET radar, with the aim to perform slant-range and Doppler shift measurements, is presented. The new system was successfully tested in several validation measurement campaigns, the results of which are reported and discussed.

Author(s):  
Martha Mejía-Kaiser

International space law is a branch of public international law. Norms of treaty law and customary law provide a foundation for the behavior of the subjects of international law performing space activities. Five multilateral space treaties are in effect, which are complemented by important recommendations of international organizations such as United Nations (UN) General Assembly Resolutions and International Telecommunication Union (ITU) Regulations. The Inter-Agency Space Debris Mitigation Coordination Committee (IADC), a non-governmental body composed of several space agencies (for instance, the European Space Agency, the United States National Aeronautics and Space Administration, the Japanese Aerospace Exploration Agency, the Russian Federal Space Agency), issued its Space Debris Mitigation Guidelines in 2002. The IADC defines “space debris” as “all man-made space objects including fragments and elements thereof, in Earth orbit or re-entering the atmosphere, that are non-functional” (IADC, 2002, Revision 1, 2007, 3.1. Space Debris). Although the term “space debris” was not included in any space treaty, the drafters of the space treaties considered space objects as “hazardous” because “component parts of a space object as well as its launch vehicles and parts thereof” detach in course of normal launching operations, because space objects can fragment during an attempted launch, and because space objects that re-enter Earth’s atmosphere and survive friction have the potential to cause damage. In addition, radioactive and chemical substances on board space objects may represent a hazard to populations and the environment on the Earth. Besides the threats to aircraft in flight and to persons and property on the surface of the Earth, space debris in orbit is increasing alarmingly and poses a threat to manned space missions and non-manned space objects. While the Convention on International Liability for Damages Caused by Space Objects (Liability Convention, 1972) considers the threats of space objects during launch, in outer space, and when entering the Earth’s atmosphere, there have been efforts to minimize the generation of space debris in orbit, outside the framework of the space treaties. The IADC Space Debris Mitigation Guidelines are a comprehensive list of recommendations to launching states, owners, and operators of space objects. They are increasingly recognized by states through the creation of codes of conduct, national legislation, recommendations of international organizations, and state practice. Furthermore, non-governmental institutions, like the International Organization for Standardization, are providing more detailed technical instructions for the implementation of the Space Debris Mitigation Guidelines, which are a breakthrough for the application of the guidelines by states of different economic and technical standing. Even though states are reluctant to accept new obligations through treaties, recommendations and state practice are becoming powerful instruments to avert the dangers of hazardous space debris that may create damage on the Earth or in orbit. Space debris also is becoming one of the drivers for the initiatives of the United Nations on the long-term sustainability of outer space activities to promote the existing mitigation guidelines and to formulate new guidelines for clearing outer space of debris.


2020 ◽  
pp. 60-65
Author(s):  
Николай Михайлович Дронь ◽  
Кирилл Валерьевич Коростюк ◽  
Александр Вячеславович Голубек ◽  
Людмила Григорьевна Дубовик ◽  
Алексей Владимирович Кулик

The article is devoted to an actual problem of clearing of low earth orbits from space objects of a technogenic origin. Existing versions of struggle against space debris, in particular, removal of technogenic objects with help of the special means for deorbiting delivered into a target orbit by launch vehicles that are especially actual for bulky space debris are considered. Recognizing that the ascent of such means for deorbiting by orbital launch vehicles demands large financial expenses, for an increase of efficiency of delivery the means for deorbiting on a low earth orbit widely known sub-orbital launch vehicles are offered: MAXUS, TEXUS (VSB-30), REXUS (Improved Orion), SS-520, MH-300, Black Brant 12А and the estimation of a capability of their application also is conducted. Are considered the use of sub-orbital launch vehicles for the ascent the means for deorbiting on altitudes of a concentration of space debris on a low earth orbit on a trajectory, close to vertical, with the subsequent operations of interception of demanded space objects, and also modernization of launch vehicles by addition of an additional stage. Results of calculations of an injection trajectory of the means for deorbiting in weight in a layer of space debris in altitude 600 … 1200 km showed of 150 kg that sub-orbital launch vehicles MAXUS, SS-520, Black Brant 12A allow executing delivery the means for deorbiting to altitudes from 770 km to 1200 km and to supply time of its presence in a layer of space debris 420 … 850 s. The most perspective sub-orbital rocket is MAXUS. It possesses higher power and a capability of installation of an additional stage by a decrease in weight of a payload with small losses the power of the first stage. It is shown that the given configuration of the rocket with engine thrust specific impulse in vacuum 300 s and engine thrust in vacuum 16 кН is capable to inject into an elliptical orbit with an altitude of apogee 600 km and altitude of a perigee 130 km with a corner of an inclination 5,5 degrees payload in weight of 55 kg. For orbit short circuit in apogee at the altitude, the upper stage should supply 600 km increase the speeds, equal 133 m/s. Mass characteristics of the second stage are induced.


Proceedings ◽  
2020 ◽  
Vol 39 (1) ◽  
pp. 15
Author(s):  
Peerapong Torteeka ◽  
Pakawat Prasit ◽  
Kritsada Palee ◽  
Apichart Leckngam ◽  
Patcharin Kamsing

Nowadays, the space operations environment have to face with space safety problems because of the growing of space debris in resident of space objects (RSOs) that can cause a catastrophic collision. In order to prevent debris-related risks in operational orbit, ground-based passive optical telescope network were used as a primary equipment for space debris observation due to the lowest maintenance costs. Furthermore, in technical, a precise tracking (position and velocity) of space objects can be beneficial towards not only orbit determination but also estimation spacecraft collision probability especially, in Low-Earth Orbit regime. National Astronomical Research Institute of Thailand (NARIT) has long experience operate in an observatory to perform both passive & active optical instruments for astrophysics and space sciences missions. In this research, based on Thai National Space objects Observation (TNSO) project, we re-establish the basic understanding of satellite tracking, optical subsystem integration and demonstration a framework so as to enhance the capability of telescope servo control subsystem. We describe the specific solutions adopted for continuous tracking mode and the results obtained during the commissioning of an alt-azimuth mounting equipped with 0.7 meter optical aperture telescope. The observation system can be performed with negligible as continuous tracking error. This contribution will present some of the experimental results and plans for further measurement campaigns.


Author(s):  
Mohammed Al - Osairy

  Several ideas we have been suggested to processing the problem of space debris, which pose a threat to the earth on the one hand and space missions and satellites on the other.  From these ideas what is logical and practical and can be implemented today, and another what is elusive. From these practical scientific studies research on the use of laser technology by sending high-intensity pulses to change the debris path and prevent collisions. These studies have varied between the proposal to send these pulses from earth or space. This research focuses on the use of space laser technology and identifies the weaknesses of this technique and provides the idea of avoiding the weaknesses through the use of LADAR system to help determine the dimensions and speed of space objects and their components, which contributes to improving the method of processing and providing data on debris and development of treatment to include even natural space objects that pose a threat to earth as asteroids.


2005 ◽  
pp. 1-12 ◽  
Author(s):  
A. Rossi

The space debris population is similar to the asteroid belt, since it is subject to a process of high-velocity mutual collisions that affects the long-term evolution of its size distribution. Presently, more than 10 000 artificial debris particles with diameters larger than 10 cm (and more than 300 000 with diameters larger than 1 cm) are orbiting the Earth, and are monitored and studied by a large network of sensors around the Earth. Many objects of different kind compose the space debris population, produced by different source mechanisms ranging from high energy fragmentation of large spacecraft to slow diffusion of liquid metal. The impact against a space debris is a serious risk that every spacecraft must face now and it can be evaluated with ad-hoc algorithms. The long term evolution of the whole debris population is studied with computer models allowing the simulation of all the known source and sink mechanisms. One of these codes is described in this paper and the evolution of the debris environment over the next 100 years, under different traffic scenarios, is shown, pointing out the possible measures to mitigate the growth of the orbital debris population. .


2021 ◽  
Vol 11 (20) ◽  
pp. 9490
Author(s):  
Shuyi Ren ◽  
Xiaohua Yang ◽  
Ronglan Wang ◽  
Siqing Liu ◽  
Xiaojing Sun

The wide application of satellite constellations in the field of space-based global communications and remote sensing has led to a substantial increase in small-satellite launch plans, a sharp increase in the density of space objects in low-Earth orbit (LEO), and a reduction in available orbit and frequency resources. This will further aggravate the trend of deterioration of the space debris environment. Taking the Starlink constellation as an example, this paper describes the influence of the constellation from the environmental debris flux of the satellite, the evaluation of the number of evasion maneuvers, the change of risk level, the success rate of post mission disposal (PMD) and the growth rate of space objects. The simulation results show that the collision risk of the Starlink constellation is related to the orbital parameters, and the higher success rate of post-mission disposal (PMD) can reduce the collision risk of the constellation. The large constellations increases the growth rate of space objects, and even if all the satellites are disposed of after the mission, the impact of constellations on the space environment can not be offset.


2020 ◽  
Vol 50 (1) ◽  
pp. 237-258
Author(s):  
Jerzy Łukasiewicz ◽  
Joanna Lubieniecka ◽  
Jerzy Kusiński ◽  
Wiesław Sarna ◽  
Krzysztof Tchórznicki

AbstractHaving a fleet of artificial satellites necessitates the construction of a system that will enable obtaining information on the situation in the Earth orbit (Space Situation Awareness - SSA). Such systems are built either as active radar systems or as passive optical systems. The automated system of optical observation and tracking of space objects (ASOPEK) consists of two optical systems (wide-angle and narrow-angle) and software enabling: detection of artificial satellites in the field of view of the system, identification of detected objects, updating the satellite database with unknown objects, updating orbits of observed objects. The ASOPEK system was created as part of a project financed by the National Center for Research and Development No. DOB-BIO7/25/02/2015.


2020 ◽  
Vol 29 (1) ◽  
pp. 94-106
Author(s):  
Chongyuan Hou ◽  
Yuan Yang ◽  
Yikang Yang ◽  
Kaizhong Yang ◽  
Xiao Zhang ◽  
...  

AbstractThe increase in space debris orbiting Earth is a critical problem for future space missions. Space debris removal has thus become an area of interest, and significant research progress is being made in this field. However, the exorbitant cost of space debris removal missions is a major concern for commercial space companies. We therefore propose the debris removal using electromagnetic launcher (DREL) system, a ground-based electromagnetic launch system (railgun), for space debris removal missions. The DREL system has three components: a ground-based electromagnetic launcher (GEML), suborbital vehicle (SOV), and mass of micrometer-scale dust (MSD) particles. The average cost of removing a piece of low-earth orbit space debris using DREL was found to be approximately USD 160,000. The DREL method is thus shown to be economical; the total cost to remove more than 2,000 pieces of debris in a cluster was only approximately USD 400 million, compared to the millions of dollars required to remove just one or two pieces of debris using a conventional space debris removal mission. By using DREL, the cost of entering space is negligible, thereby enabling countries to remove their space debris in an affordable manner.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1298
Author(s):  
Selenia Ghio ◽  
Marco Martorella ◽  
Daniele Staglianò ◽  
Dario Petri ◽  
Stefano Lischi ◽  
...  

The fast and uncontrolled rise of the space objects population is threatening the safety of space assets. At the moment, space awareness solutions are among the most calling research topic. In fact, it is vital to persistently observe and characterize resident space objects. Instrumental highlights for their characterization are doubtlessly their size and rotational period. The Inverse Radon Transform (IRT) has been demonstrated to be an effective method for this task. The analysis presented in this paper has the aim to compare various approaches relying on IRT for the estimation of the object’s rotation period. Specifically, the comparison is made on the basis of simulated and experimental data.


2021 ◽  
Vol 13 (8) ◽  
pp. 196
Author(s):  
Francesco Chiti ◽  
Romano Fantacci ◽  
Roberto Picchi ◽  
Laura Pierucci

The creation of the future quantum Internet requires the development of new systems, architectures, and communications protocols. As a matter of fact, the optical fiber technology is affected by extremely high losses; thus, the deployment of a quantum satellite network (QSN) composed of quantum satellite repeaters (QSRs) in low Earth orbit would make it possible to overcome these attenuation problems. For these reasons, we consider the design of an ad hoc quantum satellite backbone based on the Software-Defined Networking (SDN) paradigm with a modular two-tier Control Plane (CP). The first tier of the CP is embedded into a Master Control Station (MCS) on the ground, which coordinates the entire constellation and performs the management of the CP integrated into the constellation itself. This second tier is responsible for entanglement generation and management on the selected path. In addition to defining the SDN architecture in all its components, we present a possible protocol to generate entanglement on the end-to-end (E2E) path. Furthermore, we evaluate the performance of the developed protocol in terms of the latency required to establish entanglement between two ground stations connected via the quantum satellite backbone.


Sign in / Sign up

Export Citation Format

Share Document