Investigation of mixed-mode fracture of UHPC using a hybrid digital image correlation and peridynamics approach

2022 ◽  
Vol 151 ◽  
pp. 106918
Author(s):  
Xiaofeng Yan ◽  
Rui Zhang ◽  
Li Guo
Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 400 ◽  
Author(s):  
Ivo Campione ◽  
Tommaso Maria Brugo ◽  
Giangiacomo Minak ◽  
Jelena Janković Tomić ◽  
Nebojša Bogojević ◽  
...  

This work investigates the fracture behavior of maraging steel specimens manufactured by the selective laser sintering (SLS) technology, in which a crack-like notch (sharp notch) was directly produced during the additive manufacturing (AM) process. For the evaluation of the fracture toughness, the inclined asymmetrical semi-circular specimen subjected to three points loading (IASCB) was used, allowing to cover a wide variety of Mode I and II combinations. The effectiveness of manufacturing crack-like notches via the SLS technique in metals was evaluated by comparing the obtained experimental results with the ones obtained with pre-cracks induced by fatigue loading. The investigation was carried out by using the digital image correlation (DIC) technique, that allowed the evaluation of the full displacement fields around the crack tip. The displacement field was then used to compute the stress intensity factors (SIFs) for various combinations of Mode I and II, via a fitting technique which relies on the Williams’ model for the displacement. The SIFs obtained in this way were compared to the results obtained with the conventional critical load method. The results showed that the discrepancy between the two methods reduces by ranging from Mode I to Mode II loading condition. Finally, the experimental SIFs obtained by the two methods were described by the mixed mode local stress criterium.


2019 ◽  
Vol 156-157 ◽  
pp. 179-193 ◽  
Author(s):  
A.P. Ruybalid ◽  
J.P.M. Hoefnagels ◽  
O. van der Sluis ◽  
M.P.F.H.L. van Maris ◽  
M.G.D. Geers

Proceedings ◽  
2018 ◽  
Vol 2 (8) ◽  
pp. 504
Author(s):  
Jie Zhang ◽  
Cedric Kiekens ◽  
Stijn Hertelé ◽  
Wim De Waele

The trajectory of fatigue crack growth is influenced by many parameters and can be irregular due to changes in stress distribution or in material properties as the crack progresses. Images of the surface of a standardized test specimen can be used to visualize the crack trajectory in a non-destructive way. Accurately identifying the location of the crack tip, however, is challenging and requires devoted image postprocessing. In this respect, digital image correlation allows to obtain full field displacement and strain fields by analysing changes of digital images of the same sample at different stages of loading. This information can be used for the purpose of crack tip tracking. This paper presents a combined experimental-numerical study of detection and prediction of fatigue crack propagation path by means of digital image correlation (DIC) and the extended finite element method (X-FEM). Experimental validation and analyses are carried out on a modified C(T) specimen in which a curved crack trajectory is triggered by introducing mixed-mode (tension + shear) loading. The developed tools are used for validating an automated framework for crack propagation prediction.


Sign in / Sign up

Export Citation Format

Share Document