Exact coupled solution for photothermal semiconducting beams using a refined multi-phase-lag theory

2020 ◽  
Vol 128 ◽  
pp. 106233 ◽  
Author(s):  
Ashraf M. Zenkour
Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Ashraf M. Zenkour ◽  
Daoud S. Mashat ◽  
Ashraf M. Allehaibi

The current article introduces the thermoelastic coupled response of an unbounded solid with a cylindrical hole under a traveling heat source and harmonically altering heat. A refined dual-phase-lag thermoelasticity theory is used for this purpose. A generalized thermoelastic coupled solution is developed by using Laplace’s transforms technique. Field quantities are graphically displayed and discussed to illustrate the effects of heat source, phase-lag parameters, and the angular frequency of thermal vibration on the field quantities. Some comparisons are made with and without the inclusion of a moving heat source. The outcomes described here using the refined dual-phase-lag thermoelasticity theory are the most accurate and are provided as benchmarks for other researchers.


Author(s):  
J. S. Lally ◽  
L. E. Thomas ◽  
R. M. Fisher

A variety of materials containing many different microstructures have been examined with the USS MVEM. Three topics have been selected to illustrate some of the more recent studies of diffraction phenomena and defect, grain and multi-phase structures of metals and minerals.(1) Critical Voltage Effects in Metals and Alloys - This many-beam dynamical diffraction phenomenon, in which some Bragg resonances vanish at certain accelerating voltages, Vc, depends sensitively on the spacing of diffracting planes, Debye temperature θD and structure factors. Vc values can be measured to ± 0.5% in the HVEM ana used to obtain improved extinction distances and θD values appropriate to electron diffraction, as well as to probe local bonding effects and composition variations in alloys.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


Sign in / Sign up

Export Citation Format

Share Document