Blue LD-pumped electro-optically Q-switched Pr:YLF visible laser with kilowatt-level peak power

2022 ◽  
Vol 148 ◽  
pp. 107711
Author(s):  
Zixin Yang ◽  
Syed Zaheer Ud Din ◽  
Pengchao Wang ◽  
Chun Li ◽  
Zhiwei Lin ◽  
...  
Keyword(s):  
2020 ◽  
pp. 131-138

The nonlinear optical properties of pepper oil are studied by diffraction ring patterns and Z-scan techniques with continuous wave beam from solid state laser at 473 nm wavelength. The nonlinear refractive index of the sample is calculated by both techniques. The sample show high nonlinear refractive index. Based on Fresnel-Kirchhoff diffraction integral, the far-field intensity distributions of ring patterns have been calculated. It is found that the experimental results are in good agreement with the theoretical results. Also the optical limiting property of pepper oil is reported. The results obtained in this study prove that the pepper oil has applications in nonlinear optical devices.


2008 ◽  
Vol 128 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Bunlung Neammanee ◽  
Korawit Krajangpan ◽  
Somporn Sirisumrannukul ◽  
Somchai Chatratana

Author(s):  
Travis Eiles ◽  
Patrick Pardy

Abstract This paper demonstrates a breakthrough method of visible laser probing (VLP), including an optimized 577 nm laser microscope, visible-sensitive detector, and an ultimate-resolution gallium phosphide-based solid immersion lens on the 10 nm node, showing a 110 nm resolution. This is 2x better than what is achieved with the standard suite of probing systems using typical infrared (IR) wavelengths today. Since VLP provides a spot diameter reduction of 0.5x over IR methods, it is reasonable, based simply on geometry, to project that VLP using the 577 nm laser will meet the industry needs for laser probing for both the 10 nm and 7 nm process nodes. Based on its high level of optimization, including high resolution and specialized solid immersion lens, it is highly likely that this VLP technology will be one of the last optically-based fault isolation methods successfully used.


2018 ◽  
Vol 17 (6) ◽  
pp. 404-411 ◽  
Author(s):  
Syeda Mehpara Farhat ◽  
Touqeer Ahmed

Background: Aluminum (Al) causes neurodegeneration and its toxic effects on cholinergic system in the brain is well documented. However, it is unknown whether and how Al changes oscillation patterns, driven by the cholinergic system, in the hippocampus. Objective: We studied acute effects of Al on nicotinic acetylcholine receptors (nAChRs)-mediated modulation of persistent gamma oscillations in the hippocampus. Method: The field potential recording was done in CA3 area of acute hippocampal slices. Results: Carbachol-induced gamma oscillation peak power increased (1.32±0.09mV2/Hz, P<0.01) in control conditions (without Al) by application of 10µM nicotine as compared to baseline value normalized to 1. This nicotine-induced facilitation of gamma oscillation peak power was found to depend on non-α7 nAChRs. In slices with Al pre-incubation for three to four hours, gamma oscillation peak power was reduced (5.4±1.8mV2/Hz, P<0.05) and facilitatory effect of nicotine on gamma oscillation peak power was blocked as compared to the control (18.06±2.1mV2/Hz) or one hour Al pre-incubated slices (11.3±2.5mV2/Hz). Intriguingly wash-out, after three to four hours of Al incubation, failed to restore baseline oscillation power and its facilitation by nicotine as no difference was observed in gamma oscillation peak power between Al wash-out slices (3.4±1.1mV2/Hz) and slices without washout (3.6±0.9mV2/Hz). Conclusion: This study shows that at cellular level, exposure of hippocampal tissue to Al compromised nAChR-mediated facilitation of cholinergic hippocampal gamma oscillations. Longer in vitro Al exposure caused permanent changes in hippocampal oscillogenic circuitry and changed its sensitivity to nAChR-modulation. This study will help to understand the possible mechanism of cognitive decline induced by Al.


Author(s):  
Mohsen Ansari ◽  
Amir Yeganeh-Khaksar ◽  
Sepideh Safari ◽  
Alireza Ejlali

Sign in / Sign up

Export Citation Format

Share Document