Geochronological, mineralogical and geochemical studies of sulfide mineralization in the Podong mafic-ultramafic intrusion in northern Xinjiang, western China

2018 ◽  
Vol 101 ◽  
pp. 688-699 ◽  
Author(s):  
Shengchao Xue ◽  
Kezhang Qin ◽  
Chusi Li ◽  
Zhuosen Yao ◽  
Edward M. Ripley ◽  
...  
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Mingjie Zhang ◽  
Pengyu Feng ◽  
Tong Li ◽  
Liwu Li ◽  
Juerong Fu ◽  
...  

The Podong Permian ultramafic intrusion is only one ultramafic intrusion with massif Ni-Cu sulfide mineralization in the Pobei layered mafic-ultramafic complex, western China. It is obviously different in sulfide mineralization from the nearby coeval Poyi ultramafic intrusion with the largest disseminated Ni-Cu sulfide mineralization and mantle plume contribution (Zhang et al., 2017). The type and addition mechanism of the confirmed crustal contaminations and possible mantle plume involved in the intrusion formation require evidences from carbon and noble gas isotopic compositions. In the present study, we have measured C, He, Ne, and Ar isotopic compositions of volatiles from magmatic minerals in the Podong ultramafic intrusion. The results show that olivine, pyroxene, and plagioclase minerals in the Podong intrusion have variable δ13C of CO2 (-24.5‰ to -3.2‰). The CH4, C2H6, C3H8, and C4H10 hydrocarbon gases show normal or partial reversal distribution patterns of carbon isotope with carbon number and light δ13C1 value of CH4, indicating the hydrocarbon gases of biogenic origin. The δ13C of CO2 and CH4 suggested the magmatic volatile of the mantle mixed with the volatiles of thermogenic and crustal origins. Carbon and noble gas isotopes indicated that the Podong intrusion could have a different petrogenesis from the Poyi ultramafic intrusion. Two types of contaminated crustal materials can be identified as crustal fluids from subducted altered oceanic crust (AOC) in the lithospheric mantle source and a part of the siliceous crust. The carbon isotopes for different minerals show that magma spent some time crystallizing in a magma chamber during which assimilation of crustal material occurred. Subduction-devolatilization of altered oceanic crust could be the best mechanism that transported large proportion of ASF (air-saturated fluid) and crustal components into the mantle source. The mantle plume existing beneath the Poyi intrusion could provide less contribution of real materials of silicate and fluid components.


2021 ◽  
Vol 59 (4) ◽  
pp. 631-665
Author(s):  
Franck Gouedji ◽  
Christian Picard ◽  
Marc Antoine Audet ◽  
Thierry Augé ◽  
Jorge Spangenberg

ABSTRACT The mafic-ultramafic Samapleu deposits of the Yacouba complex, which host nickel, copper sulfides, and platinum-group minerals, are located in the Biankouma-Silipou region, western Ivory Coast. These intrusions originate from the mantle and would have been established during the Proterozoic (2.09 Ga) around 22 km deep within the Archean granulites (3.6–2.7 Ga) which at least partially contaminated them. Platinum-group and sulfide minerals from the Samapleu deposits were studied using optical microscopy, scanning electron microscopy, the electronic microprobe, X-ray fluorescence, fire assay, and a Thermo Fisher Scientific Delta S isotope ratio mass spectrometer system. The sulfide mineralization (mainly pyrrhotite, pentlandite, chalcopyrite ± pyrite) is mainly disseminated with, in places, semi-massive to massive sulfide veins. It is especially abundant in pyroxenite horizons with net or breccia textures. The isotopic ratios of sulfur measured from the sulfides (an average of 0.1‰), the R factor (between 1500 and 10,000), and the Cu/Pd ratios indicate a mantle source. Thus, the sulfides would have formed from sulfide liquids produced by immiscibility from the silicate mantle magma under mafic-ultramafic intrusion emplacement conditions and with possible geochemical modification of the magmas by assimilation of the surrounding continental crust. The platinum-group minerals (michenerite, merenskyite, moncheite, Co-rich gersdorffite, irarsite, and hollingworthite) are mainly associated with the sulfide phases. The nature of the platinum-group minerals is indicative of the probable role of late-magmatic hydrothermal fluids during the mineralizing process.


2004 ◽  
Vol 42 (2) ◽  
pp. 371-392 ◽  
Author(s):  
S. A. De Waal ◽  
Z. Xu ◽  
C. Li ◽  
H. Mouri

2009 ◽  
Vol 45 (2) ◽  
pp. 215-215 ◽  
Author(s):  
Mingjie Zhang ◽  
Sandra L. Kamo ◽  
Chusi Li ◽  
Peiqing Hu ◽  
Edward M. Ripley

Sign in / Sign up

Export Citation Format

Share Document