Ni-Cu sulfide mineralization and PGM from the Samapleu mafic-ultramafic intrusion, Yacouba complex, western Ivory Coast

2021 ◽  
Vol 59 (4) ◽  
pp. 631-665
Author(s):  
Franck Gouedji ◽  
Christian Picard ◽  
Marc Antoine Audet ◽  
Thierry Augé ◽  
Jorge Spangenberg

ABSTRACT The mafic-ultramafic Samapleu deposits of the Yacouba complex, which host nickel, copper sulfides, and platinum-group minerals, are located in the Biankouma-Silipou region, western Ivory Coast. These intrusions originate from the mantle and would have been established during the Proterozoic (2.09 Ga) around 22 km deep within the Archean granulites (3.6–2.7 Ga) which at least partially contaminated them. Platinum-group and sulfide minerals from the Samapleu deposits were studied using optical microscopy, scanning electron microscopy, the electronic microprobe, X-ray fluorescence, fire assay, and a Thermo Fisher Scientific Delta S isotope ratio mass spectrometer system. The sulfide mineralization (mainly pyrrhotite, pentlandite, chalcopyrite ± pyrite) is mainly disseminated with, in places, semi-massive to massive sulfide veins. It is especially abundant in pyroxenite horizons with net or breccia textures. The isotopic ratios of sulfur measured from the sulfides (an average of 0.1‰), the R factor (between 1500 and 10,000), and the Cu/Pd ratios indicate a mantle source. Thus, the sulfides would have formed from sulfide liquids produced by immiscibility from the silicate mantle magma under mafic-ultramafic intrusion emplacement conditions and with possible geochemical modification of the magmas by assimilation of the surrounding continental crust. The platinum-group minerals (michenerite, merenskyite, moncheite, Co-rich gersdorffite, irarsite, and hollingworthite) are mainly associated with the sulfide phases. The nature of the platinum-group minerals is indicative of the probable role of late-magmatic hydrothermal fluids during the mineralizing process.

2022 ◽  
Author(s):  
Stephen J. Barnes ◽  
Clifford R. Stanley ◽  
Valentina Taranovic

Abstract The Nova-Bollinger Ni-Cu-platinum group element (PGE) deposit in the Fraser zone of the Albany-Fraser orogen consists of two main orebodies, Nova and Bollinger, hosted by the same tube-shaped intrusion but having distinctly different Ni tenors of around 6.5 and 4.8 wt %, respectively. Nova is also higher in Pd, but Cu and Pt tenors are similar. Both deposits have very low PGE tenors, with average Pd concentrations of 110 ppb in massive sulfide at Bollinger and 136 ppb at Nova. The Nova and Bollinger orebodies show relatively little internal differentiation overall on deposit scale but show strong differentiation into chalcopyrite-rich and chalcopyrite-poor regions at a meter scale. This differentiation is more prevalent at Nova, where massive sulfide-filled vein arrays are more extensively developed, and in massive ores, particularly veins, than in net-textured ores. Net-textured and disseminated ores have on average Ni and Cu grades and tenors similar to those of massive, semimassive, and breccia ores in the same orebody but a smaller range of variation, largely due to a more limited extent of sulfide liquid fractionation and higher average concentrations of Pt and Pd than adjacent massive ores. Unusually for differentiated magmatic sulfides, there is no systematic positive correlation between Pt, Pd, and Cu. A partial explanation for the lack of a Pd-Cu correlation is that Pd was partitioned into peritectic pentlandite in the middle stages of sulfide liquid solidification. This explanation is not applicable to Pt, as Pt characteristically forms its own phases rather than residing in base metal sulfides. PGE tenors are very low in both orebodies, very similar to those observed in other Ni-Cu-Co sulfide ores in orogenic settings, notably the Savannah and Savannah North orebodies. This depletion is attributed to sulfide retention in the mantle source of the parent magmas rather than to previous fractional extraction of sulfide liquid in staging chambers or feeder networks. The higher Ni and Pd tenors at Nova are attributed to reworking and upgrading of precursor sulfide liquid originally deposited upstream at the Bollinger site. Replicate analyses of multiple jaw-crusher splits returned highly variable Pt and Au assays but much smaller relative errors in the other PGEs. The poor Pt and Au reproducibilities are attributed to nugget effects, explicable by much of the Pt and Au in the samples being present in sparse Pt- and Au-rich grains. This is principally true for Pt in massive rather than disseminated ores, accounting for a strong contrast in the distribution of Pt/Pd ratios between the two ore types. Numerical simulation suggests that Pt is predominantly resident in Pt-rich platinum group minerals with grain diameters of 100 μm or more and that at the low (<100 ppb) concentrations in these ores, this results in most assays significantly underreporting Pt. This is likely to be true in other low-PGE ores, such that apparent negative Pt anomalies in massive ores may in such cases be attributable to sampling artifacts.


2018 ◽  
Vol 82 (3) ◽  
pp. 593-624
Author(s):  
Thierry Augé ◽  
Éric Gloaguen ◽  
Matthieu Chevillard ◽  
Laurent Bailly

ABSTRACTThe Conakry Igneous Complex is a mafic-ultramafic intrusion emplaced contemporaneously with the opening of the Atlantic, forming a complex, 55 km x 5 km dyke-like body within which three main episodes of injection have been recognized, characterized by a lack of mineral layering. Unit 1 consists of dunite and related facies, Unit 2 of wehrlite and pyroxene peridotite and Unit 3 corresponds to various gabbro facies. Units 1 and 2 constitute the Kaloum Peninsula; Unit 3 is its NW extension, forming the 1010 m high Mount Kakoulima. Unit 3 intrudes the two previous units and corresponds to a tholeiitic liquid that crystallized in an almost closed system, and thus exhibits a strong differentiation trend, in contrast to Units 1 and 2. Mineral compositions suggest the existence of a deeper magma chamber where a first stage of differentiation occurred.Disseminated base-metal sulfides (BMS) are present in all units of the complex and earlier descriptions have mentioned a “massive sulfide layer” with 2 to 4 g/t PGE. Platinum-group minerals (PGM) are almost everywhere included in or attached to composite Ni–Fe–Cu sulfides. Most PGM grains form complex associations resulting either from exsolution or alteration. It is characteristic of the Conakry Igneous Complex PGM, described here for the first time, to be dominated by (Pd,Pt)(Te,Bi) minerals with rare Pd,Sn and Pd,Pb compositions and an absence of Pt,Pd sulfides and Pt,Pd antimonides.The constant association of the PGM with the BMS shows that the magmatic sulfide liquid acts as an efficient collector of PGE. In such a dynamic environment, the process leading to the formation of massive sulfides must be sought in the accumulation of sulfides in the conduit following host-rock assimilation. Accordingly, considering the multiple injection processes that characterize the whole intrusion, the potential for discovering additional Ni–Cu–PGE mineralization in the Conakry Igneous Complex remains high.


1986 ◽  
Vol 75 ◽  
Author(s):  
Harold F. Winters ◽  
D. Haarer

AbstractIt has been recognized for some time that the doping level in silicon influences etch rate in plasma environments[1–8]. We have now been able to reproduce and investigate these doping effects in a modulated-beam, mass spectrometer system described previously [9] using XeF2 as the etchant gas. The phenomena which have been observed in plasma reactors containing fluorine atoms are also observed in our experiments. The data has led to a model which explains the major trends.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 545
Author(s):  
Andrei Y. Barkov ◽  
Nadezhda D. Tolstykh ◽  
Robert F. Martin ◽  
Andrew M. McDonald

Tamuraite, ideally Ir5Fe10S16, occurs as discrete phases (≤20 μm) in composite inclusions hosted by grains of osmium (≤0.5 mm across) rich in Ir, in association with other platinum-group minerals in the River Ko deposit of the Sisim Placer Zone, southern Krasnoyarskiy Kray, Russia. In droplet-like inclusions, tamuraite is typically intergrown with Rh-rich pentlandite and Ir-bearing members of the laurite–erlichmanite series (up to ~20 mol.% “IrS2”). Tamuraite is gray to brownish gray in reflected light. It is opaque, with a metallic luster. Its bireflectance is very weak to absent. It is nonpleochroic to slightly pleochroic (grayish to light brown tints). It appears to be very weakly anisotropic. The calculated density is 6.30 g·cm−3. The results of six WDS analyses are Ir 29.30 (27.75–30.68), Rh 9.57 (8.46–10.71), Pt 1.85 (1.43–2.10), Ru 0.05 (0.02–0.07), Os 0.06 (0.03–0.13), Fe 13.09 (12.38–13.74), Ni 12.18 (11.78–13.12), Cu 6.30 (6.06–6.56), Co 0.06 (0.04–0.07), S 27.23 (26.14–27.89), for a total of 99.69 wt %. This composition corresponds to (Ir2.87Rh1.75Pt0.18Ru0.01Os0.01)Σ4.82(Fe4.41Ni3.90Cu1.87Co0.02)Σ10.20S15.98, calculated based on a total of 31 atoms per formula unit. The general formula is (Ir,Rh)5(Fe,Ni,Cu)10S16. Results of synchrotron micro-Laue diffraction studies indicate that tamuraite is trigonal. Its probable space group is R–3m (#166), and the unit-cell parameters are a = 7.073(1) Å, c = 34.277(8) Å, V = 1485(1) Å3, and Z = 3. The c:a ratio is 4.8462. The strongest eight peaks in the X-ray diffraction pattern [d in Å(hkl)(I)] are: 3.0106(26)(100), 1.7699(40)(71), 1.7583(2016)(65), 2.7994(205)(56), 2.9963(1010)(50), 5.7740(10)(45), 3.0534(20)(43) and 2.4948(208)(38). The crystal structure is derivative of pentlandite and related to that of oberthürite and torryweiserite. Tamuraite crystallized from a residual melt enriched in S, Fe, Ni, Cu, and Rh; these elements were incompatible in the Os–Ir alloy that nucleated in lode zones of chromitites in the Lysanskiy layered complex, Eastern Sayans, Russia. The name honors Nobumichi Tamura, senior scientist at the Advanced Light Source of the Lawrence Berkeley National Laboratory, Berkeley, California.


Geophysics ◽  
2001 ◽  
Vol 66 (1) ◽  
pp. 70-77 ◽  
Author(s):  
B. B. Bhattacharya ◽  
Dinesh Gupta ◽  
Buddhadeb Banerjee ◽  
Shalivahan

A mise‐a‐la‐masse survey was carried out in Bhukia area, Banswara district, Rajasthan, India for auriferous sulfide occurrences. This area was originally surveyed for copper mineralization. Exploratory drilling, however, proved it to be economically not viable. The area was reopened for geophysical surveys when grab samples indicated the presence of gold. Initial geophysical surveys for copper mineralization showed electromagnetic, induced polarization, and resistivity anomalies. At first, one borehole was drilled for gold exploration on the basis of initial geophysical surveys. It encountered massive sulfide mineralization in association with gold. Borehole logging and a mise‐a‐la‐masse survey were carried out in this borehole. Three further boreholes drilled on the basis of the mise‐a‐la‐masse results encountered massive sulfide mineralization in association with gold. One of the three boreholes, 100 m from the first borehole along strike, was used for another set of mise‐a‐la‐masse measurements. A composite equipotential map was prepared using the results of mise‐a‐la‐masse results of both the boreholes. The equipotential contours show a north‐northwest‐south‐southeast trend of mineralization. The boreholes drilled on the basis of the mise‐a‐la‐masse results have delineated a strike length of more than 500 m of gold‐bearing sulfide mineralization. The sulfide content ranges from 10 to 40% and gold concentration ranges from 2 to 6 ppm. The dip and plunge of the lode, as anticipated from the mise‐a‐la‐masse results, are toward the west and north, respectively. Mise‐a‐la‐masse surveys are continuing in the adjoining areas.


Tellus B ◽  
2004 ◽  
Vol 56 (4) ◽  
pp. 322-338 ◽  
Author(s):  
RALPH F. KEELING ◽  
TEGAN BLAINE ◽  
BILL PAPLAWSKY ◽  
LAURA KATZ ◽  
CHRIS ATWOOD ◽  
...  

2002 ◽  
Vol 73 (2) ◽  
pp. 446-452 ◽  
Author(s):  
J. Schreiner ◽  
C. Voigt ◽  
P. Zink ◽  
A. Kohlmann ◽  
D. Knopf ◽  
...  

2004 ◽  
Vol 42 (2) ◽  
pp. 563-582 ◽  
Author(s):  
T. Oberthur ◽  
F. Melcher ◽  
L. Gast ◽  
C. Wohrl ◽  
J. Lodziak

Sign in / Sign up

Export Citation Format

Share Document