Organic thin-film transistors with sub-10-micrometer channel length with printed polymer/carbon nanotube electrodes

2018 ◽  
Vol 52 ◽  
pp. 165-171 ◽  
Author(s):  
So Hyun Park ◽  
Jiye Kim ◽  
Seungyoung Lee ◽  
Dong Yun Lee ◽  
Sooman Lim ◽  
...  
2021 ◽  
Author(s):  
Anubha Bilgaiyan ◽  
Seung-Il Cho ◽  
Miho Abiko ◽  
Kaori Watanabe ◽  
Makoto Mizukami

Abstract The low mobility and large contact resistance in organic thin-film transistors (OTFTs) are the two major limiting factors in the development of high-performance organic logic circuits. Here, solution-processed high-performance OTFTs and circuits are reported with a polymeric gate dielectric and 6,6 bis (trans-4-butylcyclohexyl)-dinaphtho[2,1-b:2,1-f ]thieno[3,2-b]thiophene (4H-21DNTT) for the organic semiconducting layer. By optimizing and controlling the fabrication conditions, a record high saturation mobility of 8.8 cm2V− 1s− 1 was demonstrated as well as large on/off ratios (> 106) for relatively short channel lengths of 15 µm and an average carrier mobility of 10.5 cm2V-1s-1 for long channel length OTFTs (> 50 µm). The pseudo-CMOS inverter circuit with a channel length of 15 µm exhibited sharp switching characteristics with a high signal gain of 31.5 at a supply voltage of 20 V. In addition to the inverter circuit, NAND logic circuits were further investigated, which also exhibited remarkable logic characteristics, with a high gain, an operating frequency of 5 kHz, and a short propagation delay of 22.1 µs. The uniform and reproducible performance of 4H-21DNTT OTFTs show potential for large-area, low-cost real-world applications on industry-compatible bottom-contact substrates.


2011 ◽  
Vol 14 (8) ◽  
pp. H333 ◽  
Author(s):  
Minseok Kim ◽  
In-Kyu You ◽  
Hyun Han ◽  
Soon-Won Jung ◽  
Tae-Youb Kim ◽  
...  

2009 ◽  
Vol 10 (8) ◽  
pp. 1556-1561 ◽  
Author(s):  
Adrian Southard ◽  
Vinod Sangwan ◽  
Jeremy Cheng ◽  
Ellen D. Williams ◽  
Michael S. Fuhrer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anubha Bilgaiyan ◽  
Seung-Il Cho ◽  
Miho Abiko ◽  
Kaori Watanabe ◽  
Makoto Mizukami

AbstractThe low mobility and large contact resistance in organic thin-film transistors (OTFTs) are the two major limiting factors in the development of high-performance organic logic circuits. Here, solution-processed high-performance OTFTs and circuits are reported with a polymeric gate dielectric and 6,6 bis (trans-4-butylcyclohexyl)-dinaphtho[2,1-b:2,1-f]thieno[3,2-b]thiophene (4H–21DNTT) for the organic semiconducting layer. By optimizing and controlling the fabrication conditions, a high saturation mobility of 8.8 cm2 V−1 s−1 was demonstrated as well as large on/off ratios (> 106) for relatively short channel lengths of 15 μm and an average carrier mobility of 10.5 cm2 V−1 s−1 for long channel length OTFTs (> 50 μm). The pseudo-CMOS inverter circuit with a channel length of 15 μm exhibited sharp switching characteristics with a high signal gain of 31.5 at a supply voltage of 20 V. In addition to the inverter circuit, NAND logic circuits were further investigated, which also exhibited remarkable logic characteristics, with a high gain, an operating frequency of 5 kHz, and a short propagation delay of 22.1 μs. The uniform and reproducible performance of 4H–21DNTT OTFTs show potential for large-area, low-cost real-world applications on industry-compatible bottom-contact substrates.


Sign in / Sign up

Export Citation Format

Share Document