Energy levels in dilute-donor organic solar cell photocurrent generation: A thienothiophene donor molecule study

2021 ◽  
Vol 92 ◽  
pp. 106137
Author(s):  
Lakshmi N.S. Murthy ◽  
Aaron Kramer ◽  
Boya Zhang ◽  
Jing-Mei Su ◽  
Yi-Sheng Chen ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Pelin Kavak ◽  
Elif Alturk Parlak

We have fabricated organic solar cell of a new low bandgap polymer poly[4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b:3,4-b′]dithiophene-2,6-diyl-alt-4,7-bis(2-thienyl)-2,1,3-benzothiadiazole-5′,5′′-diyl] (PCPDTTBTT). We have investigated for the first time the stability tests, ISOS-L-1 and ISOS-D-3, of PCPDTTBTT solar cells. Thermal annealing of PCPDTTBTT solar cells at 80°C brought about an improvement of photocurrent generation, stability, and efficiency of the solar cells. T80 value of PCPDTTBTT solar cell is about 150 hours which is close to P3HT (235 h). PCPDTTBTT is very promising polymer for both polymer solar cell efficiency and stability.


Author(s):  
Seungyun Baik ◽  
Dong Won Kim ◽  
Hyun−Sik Kang ◽  
Seung Hwa Hong ◽  
Sungjin Park ◽  
...  

For effective supplementary acceptor molecules (A2) in ternary organic solar cell (TOSC) devices, a series of ITIC derivatives was designed and synthesized by incorporating symmetrically or asymmetrically functional termini of...


2019 ◽  
Vol 123 (18) ◽  
pp. 11950-11958 ◽  
Author(s):  
Nicolas C. Nicolaidis ◽  
Mohammed F. Al-Mudhaffer ◽  
John L. Holdsworth ◽  
Xiaojing Zhou ◽  
Warwick J. Belcher ◽  
...  

2016 ◽  
Vol 7 (1) ◽  
pp. 544-549 ◽  
Author(s):  
Yongshu Xie ◽  
Wenjun Wu ◽  
Haibo Zhu ◽  
Jingchuan Liu ◽  
Weiwei Zhang ◽  
...  

Lowering the LUMOs and decreasing energy “waste” is targeted through inserting an auxiliary group from an electron donor or acceptor into D–π–A organic sensitizers, and the photovoltaic efficiency increases 38 fold from 0.24 to 9.46%.


2019 ◽  
Author(s):  
Matthew Morgan ◽  
Maryam Nazari ◽  
Thomas Pickl ◽  
J. Mikko Rautiainen ◽  
Heikki M. Tuononen ◽  
...  

The electrophilic borylation of 2,5-diarylpyrazines results in the formation of boron-nitrogen doped dihydroindeno[1,2-<i>b</i>]fluorene which can be synthesized via mildly air-sensitive techniques and the end products handled readily under atmosphereic conditions. Through transmetallation via diarylzinc reagents a series of derivatives were sythesized which show broad absorption profiles that highlight the versatility of this backbone to be used in organic solar cell devices. These compounds can be synthesized in large yields, in alow number of steps and functionalized at many stages along the way providing a large depth of possibilities. Exploratory device paramaters were studied and show PCE of 2%.


2017 ◽  
Vol 7 (2) ◽  
pp. 37
Author(s):  
Dhuriya Deepti ◽  
Kumar Brijesh ◽  
Chauhan R.K. ◽  
◽  
◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


2021 ◽  
Vol 543 ◽  
pp. 148863
Author(s):  
Dhanasekaran Vikraman ◽  
Hailiang Liu ◽  
Sajjad Hussain ◽  
K. Karuppasamy ◽  
Hae-Kyung Youi ◽  
...  

2021 ◽  
pp. 2102361
Author(s):  
Shucheng Qin ◽  
Zhenrong Jia ◽  
Lei Meng ◽  
Can Zhu ◽  
Wenbin Lai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document