scholarly journals A lower bound on the stability region of redundancy-d with FIFO service discipline

2021 ◽  
Vol 49 (1) ◽  
pp. 113-120
Author(s):  
Gal Mendelson
2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


Author(s):  
Fatemeh Khani ◽  
Mohammad Haeri

Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately. Finally, the effectiveness of the proposed scheme is illustrated on a continuous stirred tank reactor (CSTR) process.


1993 ◽  
Vol 03 (02) ◽  
pp. 645-668 ◽  
Author(s):  
A. N. SHARKOVSKY ◽  
YU. MAISTRENKO ◽  
PH. DEREGEL ◽  
L. O. CHUA

In this paper, we consider an infinite-dimensional extension of Chua's circuit (Fig. 1) obtained by replacing the left portion of the circuit composed of the capacitance C2 and the inductance L by a lossless transmission line as shown in Fig. 2. As we shall see, if the remaining capacitance C1 is equal to zero, the dynamics of this so-called time-delayed Chua's circuit can be reduced to that of a scalar nonlinear difference equation. After deriving the corresponding 1-D map, it will be possible to determine without any approximation the analytical equation of the stability boundaries of cycles of every period n. Since the stability region is nonempty for each n, this proves rigorously that the time-delayed Chua's circuit exhibits the "period-adding" phenomenon where every two consecutive cycles are separated by a chaotic region.


Author(s):  
Yiwen Huang ◽  
Yan Chen

This paper presents a novel vehicle lateral stability control method based on an estimated lateral stability region on the phase plane of vehicle yaw rate and lateral speed, which is obtained through a local linearization method. Since the estimated stability region does not only describe vehicle local stability, but also define the oversteering and understeering characteristics, the proposed control method can achieve both local stability and vehicle handling stability. Considering the irregular geometric shape of the estimated stability region, a stability analysis algorithm is designed to determine the distance between vehicle states and stability region boundaries. State estimation or measurement errors are also incorporated in the distance calculation. Based on the calculated shortest distance between vehicle states and stability boundaries, a direct yaw moment controller is designed to maintain vehicle states stay within the stability region. CarSim® and Simulink® co-simulation is applied to verify the control design through a cornering maneuver. The simulation results show that the proposed control method can make the vehicle stay within the stability region successfully and thus always operate in a safe manner.


1995 ◽  
Vol 32 (02) ◽  
pp. 494-507 ◽  
Author(s):  
François Baccelli ◽  
Serguei Foss

This paper focuses on the stability of open queueing systems under stationary ergodic assumptions. It defines a set of conditions, the monotone separable framework, ensuring that the stability region is given by the following saturation rule: ‘saturate' the queues which are fed by the external arrival stream; look at the ‘intensity' μ of the departure stream in this saturated system; then stability holds whenever the intensity of the arrival process, say λ satisfies the condition λ < μ, whereas the network is unstable if λ > μ. Whenever the stability condition is satisfied, it is also shown that certain state variables associated with the network admit a finite stationary regime which is constructed pathwise using a Loynes-type backward argument. This framework involves two main pathwise properties, external monotonicity and separability, which are satisfied by several classical queueing networks. The main tool for the proof of this rule is subadditive ergodic theory. It is shown that, for various problems, the proposed method provides an alternative to the methods based on Harris recurrence and regeneration; this is particularly true in the Markov case, where we show that the distributional assumptions commonly made on service or arrival times so as to ensure Harris recurrence can in fact be relaxed.


Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A novel theoretical framework for the identification of the balance stability regions of biped systems is implemented on a real robotic platform. With the proposed method, the balance stability capabilities of a biped robot are quantified by a balance stability region in the state space of center of mass (COM) position and velocity. The boundary of such a stability region provides a threshold between balanced and falling states for the robot by including all possible COM states that are balanced with respect to a specified feet/ground contact configuration. A COM state outside of the stability region boundary is the sufficient condition for a falling state, from which a change in the specified contact configuration is inevitable. By specifying various positions of the robot’s feet on the ground, the effects of different contact configurations on the robot’s balance stability capabilities are investigated. Experimental walking trajectories of the robot are analyzed in relationship with their respective stability boundaries, to study the robot balance control during various gait phases.


1997 ◽  
Vol 500 ◽  
Author(s):  
J. J. Sprague ◽  
O. Porat ◽  
H. L. Tuller

ABSTRACTA composite solid state electrochemical device, with (Gd1-xCax)2Ti2O7 serving as the electrolyte and Gd2(Ti1-xMox)2O7 (GT-Mo) as the anode has recently been proposed. The latter exhibits high levels of mixed conduction under reducing atmospheres, but decomposes at high Po2. We have recently succeeded in extending the stability limits of the GT-Mo to higher Po2 with the addition of Mn. In this study, we report on the conductivity and stability of Gd2((Mo13Mn2/3)xTi1-x)207 (GMMT) as a function of Po2, T, and composition utilizing impedance spectroscopy and x-ray diffraction. The addition of Mn extends the stability region of the material to Po2 = 1 atm with little change in the magnitude of the conductivity. Defect models explaining the dependence of the conductivity on oxygen partial pressure are presented. Preliminary results from the use of an electronic blocking sandwich cell used to isolate the ionic conductivity of GMMT are also presented.


Sign in / Sign up

Export Citation Format

Share Document