Contact-Dependent Balance Stability of Walking Robots

Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A novel theoretical framework for the identification of the balance stability regions of biped systems is implemented on a real robotic platform. With the proposed method, the balance stability capabilities of a biped robot are quantified by a balance stability region in the state space of center of mass (COM) position and velocity. The boundary of such a stability region provides a threshold between balanced and falling states for the robot by including all possible COM states that are balanced with respect to a specified feet/ground contact configuration. A COM state outside of the stability region boundary is the sufficient condition for a falling state, from which a change in the specified contact configuration is inevitable. By specifying various positions of the robot’s feet on the ground, the effects of different contact configurations on the robot’s balance stability capabilities are investigated. Experimental walking trajectories of the robot are analyzed in relationship with their respective stability boundaries, to study the robot balance control during various gait phases.

2018 ◽  
Vol 10 (2) ◽  
Author(s):  
Carlotta Mummolo ◽  
William Z. Peng ◽  
Carlos Gonzalez ◽  
Joo H. Kim

A theoretical–algorithmic framework for the construction of balance stability boundaries of biped robots with multiple contacts with the environment is proposed and implemented on a robotic platform. Comprehensive and univocal definitions of the states of balance of a generic legged system are introduced with respect to the system's contact configuration. Theoretical models of joint-space and center of mass (COM)-space dynamics under multiple contacts, distribution of contact wrenches, and robotic system parameters are established for their integration into a nonlinear programing (NLP) problem. In the proposed approach, the balance stability capabilities of a biped robot are quantified by a partition of the state space of COM position and velocity. The boundary of such a partition provides a threshold between balanced and falling states of the biped robot with respect to a specified contact configuration. For a COM state to be outside of the stability boundary represents the sufficient condition for falling, from which a change in the system's contact is inevitable. Through the calculated stability boundaries, the effects of different contact configurations (single support (SS) and double support (DS) with different step lengths) on the robot's balance stability capabilities can be quantitatively evaluated. In addition, the balance characteristics of the experimental walking trajectories of the robot at various speeds are analyzed in relation to their respective stability boundaries. The proposed framework provides a contact-dependent balance stability criterion for a given system, which can be used to improve the design and control of walking robots.


2019 ◽  
Vol 40 (1) ◽  
pp. 118-131
Author(s):  
Zhiyang Wang ◽  
Yongsheng Ou

Purpose This paper aims to deal with the trade-off of the stability and the accuracy in learning human control strategy from demonstrations. With the stability conditions and the estimated stability region, this paper aims to conveniently get rid of the unstable controller or controller with relatively small stability region. With this evaluation, the learning human strategy controller becomes much more robust to perturbations. Design/methodology/approach In this paper, the criterion to verify the stability and a method to estimate the domain of attraction are provided for the learning controllers trained with support vector machines (SVMs). Conditions are formulated based on the discrete-time system Lyapunov theory to ensure that a closed-form of the learning control system is strongly stable under perturbations (SSUP). Then a Chebychev point based approach is proposed to estimate its domain of attraction. Findings Some of such learning controllers have been implemented in the vertical balance control of a dynamically stable, statically unstable wheel mobile robot.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Satoshi Ito ◽  
Shingo Nishio ◽  
Yuuki Fukumoto ◽  
Kojiro Matsushita ◽  
Minoru Sasaki

This paper considers the balance control of a biped robot under a constant external force or on a sloped ground. We have proposed a control method with feedback of the ground reaction forces and have realized adaptive posture changes that ensure the stability of the robot. However, fast responses have not been obtained because effective control is achieved by an integral feedback that accompanies a time delay necessary for error accumulation. To improve this response, here, we introduce gravity compensation in a feedforward manner. The stationary state and its stability are analyzed based on dynamic equations, and the robustness as well as the response is evaluated using computer simulations. Finally, the adaptive behaviors of the robot are confirmed by standing experiments on the slope.


2021 ◽  
Vol 11 (9) ◽  
pp. 4016
Author(s):  
Yizhou Lu ◽  
Junyao Gao ◽  
Xuanyang Shi ◽  
Dingkui Tian ◽  
Yi Liu

The point-foot biped robot is highly adaptable to and can move rapidly on complex, non-structural and non-continuous terrain, as demonstrated in many studies. However, few studies have investigated balance control methods for point-foot sliding on low-friction terrain. This article presents a control framework based on the dual-objective convergence method and whole-body control for the point-foot biped robot to stabilize its posture balance in sliding. In this control framework, a dual-objective convergence equation is used to construct the posture stability criterion and the corresponding equilibrium control task, which are simultaneously converged. Control tasks are then carried out through the whole-body control framework, which adopts an optimization method to calculate the viable joint torque under the physical constraints of dynamics, friction and contact forces. In addition, this article extends the proposed approach to balance control in standing recovery. Finally, the capabilities of the proposed controller are verified in simulations in which a 26.9-kg three-link point-foot biped robot (1) slides over a 10∘ trapezoidal terrain, (2) slides on terrain with a sinusoidal friction coefficient between 0.05 and 0.25 and (3) stands and recovers from a center-of-mass offset of 0.02 m.


2010 ◽  
Vol 07 (04) ◽  
pp. 535-563 ◽  
Author(s):  
REZA DEHGHANI ◽  
ABBAS FATTAH

Stability analysis is one of the main issues in the research area of biped robots with point feet. This article develops stability analysis and robust control of a planar biped robot with point feet with one degree of underactuation. A stability analysis is presented for the bipedal motion comprising single support and impact phases by using Poincaré map for nonlinear systems. Then, the stability conditions of periodic orbits are derived and stable gait pattern is determined using an optimization process. Thereafter, a robust sliding mode control with a time-invariant feedback is proposed to track stable gait in the presence of parameter uncertainties of the biped. Proposed approach is carried out for two types of bipeds, namely, a normal model and a balanced model in which the biped center of mass located at the hip using a novel model. Energy efficiency of biped is investigated for both models. Moreover, the stability of biped motion is studied in the presence of an unexpected stair. Simulation results show the biped motion quickly converges to cyclic motion during the first gait in both models.


Author(s):  
Denys Popelysh ◽  
Yurii Seluk ◽  
Sergyi Tomchuk

This article discusses the question of the possibility of improving the roll stability of partially filled tank vehicles while braking. We consider the dangers associated with partially filled tank vehicles. We give examples of the severe consequences of road traffic accidents that have occurred with tank vehicles carrying dangerous goods. We conducted an analysis of the dynamic processes of fluid flow in the tank and their influence on the basic parameters of the stability of vehicle. When transporting a partially filled tank due to the comparability of the mass of the empty tank with the mass of the fluid being transported, the dynamic qualities of the vehicle change so that they differ significantly from the dynamic characteristics of other vehicles. Due to large displacements of the center of mass of cargo in the tank there are additional loads that act vehicle and significantly reduce the course stability and the drivability. We consider the dynamics of liquid sloshing in moving containers, and give examples of building a mechanical model of an oscillating fluid in a tank and a mathematical model of a vehicle with a tank. We also considered the method of improving the vehicle’s stability, which is based on the prediction of the moment of action and the nature of the dynamic processes of liquid cargo and the implementation of preventive actions by executive mechanisms. Modern automated control systems (anti-lock brake system, anti-slip control systems, stabilization systems, braking forces distribution systems, floor level systems, etc.) use a certain list of elements for collecting necessary parameters and actuators for their work. This gives the ability to influence the course stability properties without interfering with the design of the vehicle only by making changes to the software of these systems. Keywords: tank vehicle, roll stability, mathematical model, vehicle control systems.


2003 ◽  
Vol 3 ◽  
pp. 266-270
Author(s):  
B.H. Khudjuyerov ◽  
I.A. Chuliev

The problem of the stability of a two-phase flow is considered. The solution of the stability equations is performed by the spectral method using polynomials of Chebyshev. A decrease in the stability region gas flow with the addition of particles of the solid phase. The analysis influence on the stability characteristic of Stokes and Archimedes forces.


Author(s):  
Fatemeh Khani ◽  
Mohammad Haeri

Industrial processes are inherently nonlinear with input, state, and output constraints. A proper control system should handle these challenging control problems over a large operating region. The robust model predictive controller (RMPC) could be an linear matrix inequality (LMI)-based method that estimates stability region of the closed-loop system as an ellipsoid. This presentation, however, restricts confident application of the controller on systems with large operating regions. In this paper, a dual-mode control strategy is employed to enlarge the stability region in first place and then, trajectory reversing method (TRM) is employed to approximate the stability region more accurately. Finally, the effectiveness of the proposed scheme is illustrated on a continuous stirred tank reactor (CSTR) process.


1993 ◽  
Vol 03 (02) ◽  
pp. 645-668 ◽  
Author(s):  
A. N. SHARKOVSKY ◽  
YU. MAISTRENKO ◽  
PH. DEREGEL ◽  
L. O. CHUA

In this paper, we consider an infinite-dimensional extension of Chua's circuit (Fig. 1) obtained by replacing the left portion of the circuit composed of the capacitance C2 and the inductance L by a lossless transmission line as shown in Fig. 2. As we shall see, if the remaining capacitance C1 is equal to zero, the dynamics of this so-called time-delayed Chua's circuit can be reduced to that of a scalar nonlinear difference equation. After deriving the corresponding 1-D map, it will be possible to determine without any approximation the analytical equation of the stability boundaries of cycles of every period n. Since the stability region is nonempty for each n, this proves rigorously that the time-delayed Chua's circuit exhibits the "period-adding" phenomenon where every two consecutive cycles are separated by a chaotic region.


Author(s):  
Peiman Naseradinmousavi

In this paper, we discuss operational optimization of a seven link biped robot using the well-known “Simulated Annealing” algorithm. Some critical parameters affecting the robot gait pattern are selected to be optimized reducing the total energy used. Nonlinear modeling process we published elsewhere is shown here for completeness. The trajectories of both the hip and ankle joints are used to plan the robot gait on slopes and undoubtedly those parameters would be the target ones for the optimization process. The results we obtained reveal considerable amounts of the energy saved for both the ascending and descending surfaces while keeping the robot stable. The stability criterion we utilized for both the modeling and then optimization is “Zero Moment Point”. A comparative study of human evolutionary gait and the operationally optimized robot is also presented.


Sign in / Sign up

Export Citation Format

Share Document