Do processing speed and short-term storage exhaust the relation between working memory capacity and intelligence?

2015 ◽  
Vol 74 ◽  
pp. 241-247 ◽  
Author(s):  
Cai-Ping Dang ◽  
Johan Braeken ◽  
Roberto Colom ◽  
Emilio Ferrer ◽  
Chang Liu
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yuri G. Pavlov ◽  
Boris Kotchoubey

Abstract Working memory (WM) consists of short-term storage and executive components. We studied cortical oscillatory correlates of these two components in a large sample of 156 participants to assess separately the contribution of them to individual differences in WM. The participants were presented with WM tasks of above-average complexity. Some of the tasks required only storage in WM, others required storage and mental manipulations. Our data indicate a close relationship between frontal midline theta, central beta activity and the executive components of WM. The oscillatory counterparts of the executive components were associated with individual differences in verbal WM performance. In contrast, alpha activity was not related to the individual differences. The results demonstrate that executive components of WM, rather than short-term storage capacity, play the decisive role in individual WM capacity limits.


2020 ◽  
Author(s):  
Yuri G. Pavlov ◽  
Boris Kotchoubey

Working memory (WM) consists of short-term storage and executive components. We studied cortical oscillatory correlates of these two components in a large sample of 156 participants to assess separately the contribution of them to individual differences in WM. The participants were presented with WM tasks of above-average complexity. Some of the tasks required only storage in WM, others required storage and mental manipulations. Our data indicate a close relationship between frontal midline theta, central beta activity and the executive components of WM. The oscillatory counterparts of the executive components were associated with individual differences in verbal WM performance. In contrast, alpha activity was not related to the individual differences. The results demonstrate that executive components of WM, rather than short-term storage capacity, play the decisive role in individual WM capacity limits.


Author(s):  
Mirosław Pawlak ◽  
Adriana Biedroń

Abstract This paper reports the findings of a study that investigated the relationship between phonological short-term memory (PSTM), working memory capacity (WMC), and the level of mastery of L2 grammar. Grammatical mastery was operationalized as the ability to produce and comprehend English passive voice with reference to explicit and implicit (or highly automatized) knowledge. Correlational analysis showed that PSTM was related to implicit productive knowledge while WMC was linked to explicit productive knowledge. However, regression analysis showed that those relationships were weak and mediated by overall mastery of target language grammar, operationalized as final grades in a grammar course.


2020 ◽  
Vol 5 ◽  
pp. 239694152094551
Author(s):  
Seçkin Arslan ◽  
Lucie Broc ◽  
Fabien Mathy

Background and aims Children with developmental language disorder (DLD) often perform below their typically developing peers on verbal memory tasks. However, the picture is less clear on visual memory tasks. Research has generally shown that visual memory can be facilitated by verbal representations, but few studies have been conducted using visual materials that are not easy to verbalize. Therefore, we attempted to construct non-verbalizable stimuli to investigate the impact of working memory capacity. Method and results We manipulated verbalizability in visual span tasks and tested whether minimizing verbalizability could help reduce visual recall performance differences across children with and without developmental language disorder. Visuals that could be easily verbalized or not were selected based on a pretest with non-developmental language disorder young adults. We tested groups of children with developmental language disorder (N = 23) and their typically developing peers (N = 65) using these high and low verbalizable classes of visual stimuli. The memory span of the children with developmental language disorder varied across the different stimulus conditions, but critically, although their storage capacity for visual information was virtually unimpaired, the children with developmental language disorder still had difficulty in recalling verbalizable images with simple drawings. Also, recalling complex (galaxy) images with low verbalizability proved difficult in both groups of children. An item-based analysis on correctly recalled items showed that higher levels of verbalizability enhanced visual recall in the typically developing children to a greater extent than the children with developmental language disorder. Conclusions and clinical implication: We suggest that visual short-term memory in typically developing children might be mediated with verbal encoding to a larger extent than in children with developmental language disorder, thus leading to poorer performance on visual capacity tasks. Our findings cast doubts on the idea that short-term storage impairments are limited to the verbal domain, but they also challenge the idea that visual tasks are essentially visual. Therefore, our findings suggest to clinicians working with children experiencing developmental language difficulties that visual memory deficits may not necessarily be due to reduced non-verbal skills but may be due to the high amount of verbal cues in visual stimuli, from which they do not benefit in comparison to their peers.


Author(s):  
Stoo Sepp ◽  
Steven J. Howard ◽  
Sharon Tindall-Ford ◽  
Shirley Agostinho ◽  
Fred Paas

In 1956, Miller first reported on a capacity limitation in the amount of information the human brain can process, which was thought to be seven plus or minus two items. The system of memory used to process information for immediate use was coined “working memory” by Miller, Galanter, and Pribram in 1960. In 1968, Atkinson and Shiffrin proposed their multistore model of memory, which theorized that the memory system was separated into short-term memory, long-term memory, and the sensory register, the latter of which temporarily holds and forwards information from sensory inputs to short term-memory for processing. Baddeley and Hitch built upon the concept of multiple stores, leading to the development of the multicomponent model of working memory in 1974, which described two stores devoted to the processing of visuospatial and auditory information, both coordinated by a central executive system. Later, Cowan’s theorizing focused on attentional factors in the effortful and effortless activation and maintenance of information in working memory. In 1988, Cowan published his model—the scope and control of attention model. In contrast, since the early 2000s Engle has investigated working memory capacity through the lens of his individual differences model, which does not seek to quantify capacity in the same way as Miller or Cowan. Instead, this model describes working memory capacity as the interplay between primary memory (working memory), the control of attention, and secondary memory (long-term memory). This affords the opportunity to focus on individual differences in working memory capacity and extend theorizing beyond storage to the manipulation of complex information. These models and advancements have made significant contributions to understandings of learning and cognition, informing educational research and practice in particular. Emerging areas of inquiry include investigating use of gestures to support working memory processing, leveraging working memory measures as a means to target instructional strategies for individual learners, and working memory training. Given that working memory is still debated, and not yet fully understood, researchers continue to investigate its nature, its role in learning and development, and its implications for educational curricula, pedagogy, and practice.


2016 ◽  
Vol 39 ◽  
Author(s):  
Stephen Grossberg

AbstractChristiansen & Chater's (C&C's) key goals for a language system have been realized by neural models for short-term storage of linguistic items in an Item-Order-Rank working memory, which inputs to Masking Fields that rapidly learn to categorize, or chunk, variable-length linguistic sequences, and choose the contextually most predictive list chunks while linguistic inputs are stored in the working memory.


Sign in / Sign up

Export Citation Format

Share Document