WITHDRAWN: A Last Interglacial record of environmental changes from the Sulmona Basin (central Italy)

Author(s):  
Eleonora Regattieri ◽  
Biagio Giaccio ◽  
Sebastien Nomade ◽  
Alexander Francke ◽  
Hendrik Vogel ◽  
...  
2017 ◽  
Vol 472 ◽  
pp. 51-66 ◽  
Author(s):  
Eleonora Regattieri ◽  
Biagio Giaccio ◽  
Sebastien Nomade ◽  
Alexander Francke ◽  
Hendrik Vogel ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
F. Marra ◽  
C. Petronio ◽  
P. Ceruleo ◽  
G. Di Stefano ◽  
F. Florindo ◽  
...  

2018 ◽  
Author(s):  
Tristan Salles ◽  
Jodie Pall ◽  
M. Jody Webster ◽  
Belinda Dechnik

Abstract. Assemblages of corals characterise specific reef biozones and the environmental conditions that change laterally across a reef and with depth. Drill cores through fossil reefs record the time- and depth-distribution of assemblages, which captures a partial history of the vertical growth response of reefs to changing palaeoenvironmental conditions. The effects of environmental factors on reef growth are well understood on ecological time-scales but are poorly constrained at centennial to millennial timescales. pyReef-Core is a stratigraphic forward model designed to solve the inverse problem of unobservable environmental processes controlling vertical reef development by simulating the physical, biological and sedimentological processes that determine vertical assemblage changes in drill cores. It models the stratigraphic development of coral reefs at centennial to millennial timescales under environmental forcing conditions including accommodation (relative sea level upward growth), oceanic variability (flow speed, nutrients, pH and temperature), sediment input and tectonics. It also simulates competitive coral assemblage interactions using the generalised Lotka-Volterra system of equations (GLVEs) and can be used to infer the influence of environmental conditions on the zonation and vertical accretion and stratigraphic succession of coral assemblages over decadal timescales and greater. The tool can quantitatively test carbonate platform development under the influence of ecological and environmental processes, and efficiently interpret vertical growth and karstification patterns observed in drill cores. We provide two realistic case studies illustrating the basic capabilities of the model and use it to reconstruct (1) the Holocene history (from 8500 years to present) of coral community responses to environmental changes, and (2) the evolution of an idealised coral-reef core since the Last Interglacial (from 140 000 years to present) under the influence of sea-level change, subsidence and karstification. We find that the model reproduces the details of the formation of existing coral-reef stratigraphic sequences both in terms of assemblages succession, accretion rates and depositional thicknesses. It can be applied to estimate the impact of changing environmental conditions on growth rates and patterns under many different settings and initial conditions.


Quaternary ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 9 ◽  
Author(s):  
Anastasia Markova ◽  
Andrey Puzachenko

Small mammal remains obtained from the European localities dated to the Eemian (Mikulino) age have been analyzed for the first time at a regional scale based on the present biogeographical regionalization of Europe. The regional faunas dated to the warm interval in the first part of the Late Pleistocene display notable differences in fauna composition, species richness, and diversity indices. The classification of regional faunal assemblages revealed distinctive features of small mammal faunas in Eastern and Western Europe during the Eemian (=Mikulino, =Ipswichian) Interglacial. Faunas of the Iberian Peninsula, Apennine Peninsula, and Sardinia Island appear to deviate from the other regions. In the Eemian Interglacial, the maximum species richness of small mammals (≥40 species) with a relatively high proportion of typical forest species was recorded in Western and Central Europe and in the western part of Eastern Europe. The lowest species richness (5–14 species) was typical of island faunas and of those in the north of Eastern Europe. The data obtained make it possible to reconstruct the distribution of forest biotopes and open habitats (forest-steppe and steppe) in various regions of Europe. Noteworthy is a limited area of forests in the south and in the northeastern part of Europe. In these regions, it seems likely that under conditions of relatively high temperatures characteristic of the Last Interglacial and an insufficient moisture supply there could exist open forest stands or forest-steppe landscapes, as suggested by the presence of species indicative of forest-steppe and steppe north of the forest zone. The results obtained are useful in modeling changes in the mammal faunas as well as environmental changes in entire Europe due to global climatic changes (including the global warming recorded at present).


The Holocene ◽  
2012 ◽  
Vol 22 (12) ◽  
pp. 1461-1471 ◽  
Author(s):  
C Giraudi

The stratigraphic study of the Stagno di Maccarese, carried out on the sediments exposed in about 7 km of trenches excavated in an area of approximately 1.5 km2, has shown that in the course of the Holocene many environmental variations have taken place. The complex evolution of the marsh is demonstrated by the variations in water salinity and the presence of erosion surfaces and soils between the sediments. In the early Holocene, the area studied was an isolated marsh with water having variable salinity, and it was only about 6000 cal. yr BP that it was encompassed in the system of inner delta marshes. In the delta environment, the water of the marsh was oligohaline until about 9th–8th centuries bc, brackish from 9th–8th centuries bc to about 600 yr BP, and later oligohaline until the 19th century drainage. A number of environmental variations are connected with local phenomena, such as erosion of the beach ridges and Tiber floods, but the others can be correlated chronologically with climatic events recorded at regional and global scale. The millennial variations seem to be connected with changes in insolation, while abrupt variations can be correlated chronologically with the IRD events dated at 8200, 5900, 4200, 2800, 1400 and 500 cal. yr BP.


2000 ◽  
Vol 54 (2) ◽  
pp. 246-252 ◽  
Author(s):  
Biancamaria Narcisi

Records of eolian quartz from two continuous sediment sequences drilled in Lagaccione and Lago di Vico volcanic lakes in central Italy contribute to the knowledge of eolian deposition in the central Mediterranean during the last 100,000 years. The chronology is based on 14C and 40Ar/39Ar dating and tephra analysis. Pollen data provide the paleoenvironmental framework and enable correlation between the cores. Eolian inputs were high during the steppe phases corresponding to oxygen isotope stages 4 and 2. Low inputs correspond to the forest phases of the last interglacial and the middle Holocene. Eolian inputs have increased in the late Holocene. Patterns of eolian deposition in central Italy resemble the Antarctic dust record from the Vostok ice core. The Italian patterns may also correspond with hydrological changes registered in North Africa. The main source of dust loading over the Mediterranean now, North Africa, may have played an important role in dust supply throughout the last climatic cycle.


2010 ◽  
Vol 40 (5) ◽  
pp. 850-860 ◽  
Author(s):  
M. Chiesi ◽  
M. Moriondo ◽  
F. Maselli ◽  
L. Gardin ◽  
L. Fibbi ◽  
...  

Simulating the effects of possible environmental changes on the forest carbon budget requires the use of calibrated and tested models of ecosystem processes. A recently proposed simulation approach based on the use of the BIOME-BGC model was applied to yield estimates of present carbon fluxes and pools in Tuscany forests (central Italy). After the validation of these estimates against existing ground data, the simulation approach was used to assess the impact of plausible climate changes (+2 °C and increased CO2 concentration) on forest carbon dynamics (gross primary production (GPP), net primary production (NPP), and relevant allocations). The results indicate that the temperature change tends to inhibit all production and allocation processes, which are instead enhanced by the CO2 concentration rise. The combination of the two factors leads to a general increase in both GPP and NPP that is higher for deciduous oaks and chestnut (+30% and 24% for GPP and +42% and 31% for NPP, respectively). Additionally, vegetation carbon is slightly increased, while total soil carbon remains almost unchanged with respect to the present conditions. These findings are analyzed with reference to the Tuscany forest situation and previous studies on the subject.


Sign in / Sign up

Export Citation Format

Share Document