Clinical features and varieties of non-motor fluctuations in Parkinson's disease: A Japanese multicenter study

2013 ◽  
Vol 19 (1) ◽  
pp. 104-108 ◽  
Author(s):  
Morinobu Seki ◽  
Kazushi Takahashi ◽  
Daisuke Uematsu ◽  
Ban Mihara ◽  
Yoko Morita ◽  
...  
2008 ◽  
Vol 23 (8) ◽  
pp. 1130-1136 ◽  
Author(s):  
Pedro J. García Ruiz ◽  
Ángel Sesar Ignacio ◽  
Begoña Ares Pensado ◽  
Alfonso Castro García ◽  
Fernando Alonso Frech ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 715
Author(s):  
Emilio Fernández-Espejo ◽  
Fernando Rodríguez de Fonseca ◽  
Juan Suárez ◽  
Eduardo Tolosa ◽  
Dolores Vilas ◽  
...  

Background. Salivary α-synuclein (aSyn) and its nitrated form, or 3-nitrotyrosine-α-synuclein (3-NT-αSyn), hold promise as biomarkers for idiopathic Parkinson’s disease (IPD). Nitrative stress that is characterized by an excess of 3-nitrotyrosine proteins (3-NT-proteins) has been proposed as a pathogenic mechanism in IPD. The objective is to study the pathological role of native αSyn, 3-NT-αSyn, and 3-NT-proteins in the saliva and submandibulary glands of patients with IPD. Methods. The salivary and serum αSyn and 3-NT-proteins concentration is evaluated with ELISA in patients and controls. Correlations of αSyn and 3-NT-proteins content with clinical features of the disease are examined. Immunohistochemical 3-NT-αSyn expression in submandibulary gland sections is analyzed. Results. (a) Salivary concentration and saliva/serum ratios of native αSyn and 3-NT-proteins are similar in patients and controls; (b) salivary αSyn and 3-NT-proteins do not correlate with any clinical feature; and (c) three patterns of 3-NT-αSyn-positive inclusions are observed on histological sections: rounded “Lewy-type” aggregates of 10–25 µm in diameter, coarse deposits with varied morphology, and spheroid inclusions or bodies of 3–5 µm in diameter. “Lewy-type” and coarse inclusions are observed in the interlobular connective tissue of the gland, and small-sized bodies are located within the cytoplasm of duct cells. “Lewy-type” inclusions are only observed in patients, and the remaining patterns of inclusions are observed in both the patients and controls. Conclusions. The patients’ saliva presents a similar concentration of native αSyn and 3-nitrotyrosine-proteins than that of the controls, and no correlations with clinical features are found. These findings preclude the utility of native αSyn in the saliva as a biomarker, and they indicate the absence of nitrative stress in the saliva and serum of patients. As regards nitrated αSyn, “Lewy-type” inclusions expressing 3-NT-αSyn are observed in the patients, not the controls—a novel finding that suggests that a biopsy of the submandibulary gland, if proven safe, could be a useful technique for diagnosing IPD. Finally, to our knowledge, this is also the first description of 3-NT-αSyn-immunoreactive intracytoplasmic bodies in cells that are located outside the nervous system. These intracytoplasmic bodies are present in duct cells of submandibulary gland sections from all subjects regardless of their pathology, and they can represent an aging or involutional change. Further immunostaining studies with different antibodies and larger samples are needed to validate the data.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Gloria Vergara-Diaz ◽  
Jean-Francois Daneault ◽  
Federico Parisi ◽  
Chen Admati ◽  
Christina Alfonso ◽  
...  

AbstractParkinson’s disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms. Dyskinesia and motor fluctuations are complications of PD medications. An objective measure of on/off time with/without dyskinesia has been sought for some time because it would facilitate the titration of medications. The objective of the dataset herein presented is to assess if wearable sensor data can be used to generate accurate estimates of limb-specific symptom severity. Nineteen subjects with PD experiencing motor fluctuations were asked to wear a total of five wearable sensors on both forearms and shanks, as well as on the lower back. Accelerometer data was collected for four days, including two laboratory visits lasting 3 to 4 hours each while the remainder of the time was spent at home and in the community. During the laboratory visits, subjects performed a battery of motor tasks while clinicians rated limb-specific symptom severity. At home, subjects were instructed to use a smartphone app that guided the periodic performance of a set of motor tasks.


Sign in / Sign up

Export Citation Format

Share Document