scholarly journals Native α-Synuclein, 3-Nitrotyrosine Proteins, and Patterns of Nitro-α-Synuclein-Immunoreactive Inclusions in Saliva and Submandibulary Gland in Parkinson’s Disease

Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 715
Author(s):  
Emilio Fernández-Espejo ◽  
Fernando Rodríguez de Fonseca ◽  
Juan Suárez ◽  
Eduardo Tolosa ◽  
Dolores Vilas ◽  
...  

Background. Salivary α-synuclein (aSyn) and its nitrated form, or 3-nitrotyrosine-α-synuclein (3-NT-αSyn), hold promise as biomarkers for idiopathic Parkinson’s disease (IPD). Nitrative stress that is characterized by an excess of 3-nitrotyrosine proteins (3-NT-proteins) has been proposed as a pathogenic mechanism in IPD. The objective is to study the pathological role of native αSyn, 3-NT-αSyn, and 3-NT-proteins in the saliva and submandibulary glands of patients with IPD. Methods. The salivary and serum αSyn and 3-NT-proteins concentration is evaluated with ELISA in patients and controls. Correlations of αSyn and 3-NT-proteins content with clinical features of the disease are examined. Immunohistochemical 3-NT-αSyn expression in submandibulary gland sections is analyzed. Results. (a) Salivary concentration and saliva/serum ratios of native αSyn and 3-NT-proteins are similar in patients and controls; (b) salivary αSyn and 3-NT-proteins do not correlate with any clinical feature; and (c) three patterns of 3-NT-αSyn-positive inclusions are observed on histological sections: rounded “Lewy-type” aggregates of 10–25 µm in diameter, coarse deposits with varied morphology, and spheroid inclusions or bodies of 3–5 µm in diameter. “Lewy-type” and coarse inclusions are observed in the interlobular connective tissue of the gland, and small-sized bodies are located within the cytoplasm of duct cells. “Lewy-type” inclusions are only observed in patients, and the remaining patterns of inclusions are observed in both the patients and controls. Conclusions. The patients’ saliva presents a similar concentration of native αSyn and 3-nitrotyrosine-proteins than that of the controls, and no correlations with clinical features are found. These findings preclude the utility of native αSyn in the saliva as a biomarker, and they indicate the absence of nitrative stress in the saliva and serum of patients. As regards nitrated αSyn, “Lewy-type” inclusions expressing 3-NT-αSyn are observed in the patients, not the controls—a novel finding that suggests that a biopsy of the submandibulary gland, if proven safe, could be a useful technique for diagnosing IPD. Finally, to our knowledge, this is also the first description of 3-NT-αSyn-immunoreactive intracytoplasmic bodies in cells that are located outside the nervous system. These intracytoplasmic bodies are present in duct cells of submandibulary gland sections from all subjects regardless of their pathology, and they can represent an aging or involutional change. Further immunostaining studies with different antibodies and larger samples are needed to validate the data.

2019 ◽  
Vol 121 (5) ◽  
pp. 1856-1864 ◽  
Author(s):  
Cecilia Bove ◽  
R. Alberto Travagli

Parkinson’s disease (PD) is predominantly idiopathic in origin, and a large body of evidence indicates that gastrointestinal (GI) dysfunctions are a significant comorbid clinical feature; these dysfunctions include dysphagia, nausea, delayed gastric emptying, and severe constipation, all of which occur commonly before the onset of the well-known motor symptoms of PD. Based on a distinct distribution pattern of Lewy bodies (LB) in the enteric nervous system (ENS) and in the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), and together with the early onset of GI symptoms, it was suggested that idiopathic PD begins in the ENS and spreads to the central nervous system (CNS), reaching the DMV and the substantia nigra pars compacta (SNpc). These two areas are connected by a recently discovered monosynaptic nigro-vagal pathway, which is dysfunctional in rodent models of PD. An alternative hypothesis downplays the role of LB transport through the vagus nerve and proposes that PD pathology is governed by regional or cell-restricted factors as the leading cause of nigral neuronal degeneration. The purpose of this brief review is to summarize the neuronal electrophysiological findings in the SNpc and DMV in PD.


1996 ◽  
Vol 19 (1) ◽  
pp. 69-69
Author(s):  
A. Berardelli ◽  
R. Agostino ◽  
A. Currà ◽  
M. Manfredi

AbstractLatash & Anson's explanation of bradykinesia in patients with Parkinson's disease and cocontraction in dystonic patients is intriguing. However, the proposed adaptive changes in the central nervous system do not fit well with both clinical and experimental evidence of motor impairment in these patients. In particular, we question the explanation of: (1) the role of postural reactions and spatial accuracy in bradykinesia, (2) certain abnormalities during the execution of sequential and simultaneous movements, (3) the sudden changes in mobility (ON and OFF) of Parkinsonian patients, and (4) the meaning of reflex circuitry changes in dystonia.


2020 ◽  
pp. 10-14
Author(s):  
R. R. Tyutina ◽  
A. A. Pilipovich ◽  
V. L. Golubev ◽  
Al. B. Danilov

Parkinson's disease (PD) is characterized by both motor (hypokinesia, resting tremor, rigidity, postural instability) and non-motor symptoms. It is known that some non-motor manifestations, such as disturbances in smell, sleep, depression, gastrointestinal dysfunction, and others, may precede motor symptoms. Replenishment of dopamine deficiency, which, as known, develops in PD due to the death of dopaminergic neurons of the substantia nigra, makes it possible to influence most motor and some non-motor symptoms of parkinsonism, however many non-motor manifestations remain resistant to this therapy. In addition, it has only a symptomatic effect, and the pathogenetic treatment of PD is currently unavailable, which is primarily due to insufficient knowledge about the etiology and mechanisms of the development of the disease. In particular, it has already been established that alpha synuclein (a pathomorphological marker of PD) begins to be deposited in the intestinal wall, in the enteric nervous system (ENS) long before it appears in neurons of the substantia nigra. Understanding the mechanism of interaction along the axis “intestine – brain”, the role of intestinal wall dysfunction in the onset and development of PD can lead to the development of new directions in the treatment of this disease. Today, the role of microbiota, in particular the intestinal microbiota, in the functioning of the human body, its various systems, including the nervous system, is widely studied in the world. The influence of its imbalance on the activation of inflammatory reactions in the ENS and the possibility of the subsequent development of PD are considered. This review provides some evidence supporting the hypothesis that PD can be initiated in the gut. In addition, the possibilities of influencing the course of BP using pre-, pro-, syn- and metabiotics are considered.


2018 ◽  
Vol 76 (2) ◽  
pp. 67-70 ◽  
Author(s):  
Oscar S. Gershanik

ABSTRACT Current understanding of the pathophysiology of Parkinson's disease suggests a key role of the accumulation of alpha-synuclein in the pathogenesis. This critical review highlights major landmarks, hypotheses and controversies about the origin and progression of synucleinopathy in Parkinson's disease, leading to an updated review of evidence suggesting the enteric nervous system might be the starting point for the whole process. Although accumulating and compelling evidence favors this theory, the remaining knowledge gaps are important points for future studies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alessia Putortì ◽  
Michele Corrado ◽  
Micol Avenali ◽  
Daniele Martinelli ◽  
Marta Allena ◽  
...  

Background: The sequence effect (SE), defined as a reduction in amplitude of repetitive movements, is a common clinical feature of Parkinson's disease (PD) and is supposed to be a major contributor to freezing of gait (FOG). During walking, SE manifests as a step-by-step reduction in step length when approaching a turning point or gait destination, resulting in the so-called destination sequence effect (dSE). Previous studies explored the therapeutic effects of several strategies on SE, but none of them evaluated the role of an intensive rehabilitative program.Objectives: Here we aim to study the effects of a 4-week rehabilitative program on dSE in patients with PD with and without FOG.Methods: Forty-three patients (30 males, 70.6 ± 7.5 years old) with idiopathic PD were enrolled. The subjects were divided into two groups: patients with (PD + FOG, n = 23) and without FOG (PD – FOG, n = 20). All patients underwent a standardized 4-week intensive rehabilitation in-hospital program. At hospital admission (T0) and discharge (T1), all subjects were evaluated with an inertial gait analysis for dSE recording.Results: At T0, the dSE was more negative in the PD + FOG group (−0.80 ± 0.6) when compared to the PD – FOG group (−0.39 ± 0.3) (p = 0.007), even when controlling for several clinical and demographic features. At T1, the dSE was reduced in the overall study population (p = 0.001), with a more pronounced improvement in the PD + FOG group (T0: −0.80 ± 0.6; T1: −0.23 ± 0.4) when compared to the PD – FOG group (T0: −0.39 ± 0.3; T1: −0.22 ± 0.5) (p = 0.012). At T1, we described in the overall study population an improvement in speed, cadence, stride duration, and stride length (p = 0.001 for all variables).Conclusions: dSE is a core feature of PD gait dysfunction, specifically in patients with FOG. A 4-week intensive rehabilitative program improved dSE in PD patients, exerting a more notable beneficial effect in the PD + FOG group.


Sign in / Sign up

Export Citation Format

Share Document