The effect of bilateral sub-thalamic nucleus deep brain stimulation (STN-DBS) on prosody of speech of Parkinson’s disease

2016 ◽  
Vol 22 ◽  
pp. e106
Author(s):  
Fatemeh Majdinasab ◽  
Seyed Amir Hassan Habibi ◽  
Elnaz Ghorbani ◽  
Maryam Khoddami
2021 ◽  
Vol 15 ◽  
Author(s):  
Lila H. Levinson ◽  
David J. Caldwell ◽  
Jeneva A. Cronin ◽  
Brady Houston ◽  
Steve I. Perlmutter ◽  
...  

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a clinically effective tool for treating medically refractory Parkinson’s disease (PD), but its neural mechanisms remain debated. Previous work has demonstrated that STN DBS results in evoked potentials (EPs) in the primary motor cortex (M1), suggesting that modulation of cortical physiology may be involved in its therapeutic effects. Due to technical challenges presented by high-amplitude DBS artifacts, these EPs are often measured in response to low-frequency stimulation, which is generally ineffective at PD symptom management. This study aims to characterize STN-to-cortex EPs seen during clinically relevant high-frequency STN DBS for PD. Intraoperatively, we applied STN DBS to 6 PD patients while recording electrocorticography (ECoG) from an electrode strip over the ipsilateral central sulcus. Using recently published techniques, we removed large stimulation artifacts to enable quantification of STN-to-cortex EPs. Two cortical EPs were observed – one synchronized with DBS onset and persisting during ongoing stimulation, and one immediately following DBS offset, here termed the “start” and the “end” EPs respectively. The start EP is, to our knowledge, the first long-latency cortical EP reported during ongoing high-frequency DBS. The start and end EPs differ in magnitude (p < 0.05) and latency (p < 0.001), and the end, but not the start, EP magnitude has a significant relationship (p < 0.001, adjusted for random effects of subject) to ongoing high gamma (80–150 Hz) power during the EP. These contrasts may suggest mechanistic or circuit differences in EP production during the two time periods. This represents a potential framework for relating DBS clinical efficacy to the effects of a variety of stimulation parameters on EPs.


Author(s):  
Azari H ◽  

Background: Deep Brain Stimulation (DBS) is regarded as a viable therapeutic choice for Parkinson’s Disease (PD). The two most common sites for DBS are the Subthalamic Nucleus (STN) and Globus Pallidus (GPi). In this study, the clinical effectiveness of these two targets was compared. Methods: A systematic literature search in electronic databases were restricted to English language publications 2010 to 2021. Specified MeSH terms were searched in all databases. Studies that evaluated the Unified Parkinson’s Disease Rating Scale (UPDRS) III were selected by meeting the following criteria: (1) had at least three months follow-up period; (2) compared both GPi and STN DBS; (3) at least five participants in each group; (4) conducted after 2010. Study quality assessment was performed using the Modified Jadad Scale. Results: 3577 potentially relevant articles were identified 3569 were excluded based on title and abstract, duplicate and unsuitable article removal. Eight articles satisfied the inclusion criteria and were scrutinized (458 PD patients). Majority of studies reported no statistically significant between-group difference for improvements in UPDRS III scores. Conclusions: Although there were some results in terms of action tremor, rigidity, and urinary symptoms, which indicated that STN DBS might be a better choice or regarding the adverse effects, GPi seemed better; but it cannot be concluded that one target is superior. Other larger randomized clinical trials with longer follow-up periods and control groups are needed to decide which target is more efficient for stimulation and imposes fewer adverse effects on the patients.


2018 ◽  
Vol 130 (1) ◽  
pp. 109-120 ◽  
Author(s):  
Tsinsue Chen ◽  
Zaman Mirzadeh ◽  
Kristina M. Chapple ◽  
Margaret Lambert ◽  
Holly A. Shill ◽  
...  

OBJECTIVERecent studies have shown similar clinical outcomes between Parkinson disease (PD) patients treated with deep brain stimulation (DBS) under general anesthesia without microelectrode recording (MER), so-called “asleep” DBS, and historical cohorts undergoing “awake” DBS with MER guidance. However, few studies include internal controls. This study aims to compare clinical outcomes after globus pallidus internus (GPi) and subthalamic nucleus (STN) DBS using awake and asleep techniques at a single institution.METHODSPD patients undergoing awake or asleep bilateral GPi or STN DBS were prospectively monitored. The primary outcome measure was stimulation-induced change in motor function off medication 6 months postoperatively, measured using the Unified Parkinson’s Disease Rating Scale part III (UPDRS-III). Secondary outcomes included change in quality of life, measured by the 39-item Parkinson’s Disease Questionnaire (PDQ-39), change in levodopa equivalent daily dosage (LEDD), stereotactic accuracy, stimulation parameters, and adverse events.RESULTSSix-month outcome data were available for 133 patients treated over 45 months (78 GPi [16 awake, 62 asleep] and 55 STN [14 awake, 41 asleep]). UPDRS-III score improvement with stimulation did not differ between awake and asleep groups for GPi (awake, 20.8 points [38.5%]; asleep, 18.8 points [37.5%]; p = 0.45) or STN (awake, 21.6 points [40.3%]; asleep, 26.1 points [48.8%]; p = 0.20) targets. The percentage improvement in PDQ-39 and LEDD was similar for awake and asleep groups for both GPi (p = 0.80 and p = 0.54, respectively) and STN cohorts (p = 0.85 and p = 0.49, respectively).CONCLUSIONSIn PD patients, bilateral GPi and STN DBS using the asleep method resulted in motor, quality-of-life, and medication reduction outcomes that were comparable to those of the awake method.


2014 ◽  
Vol 27 (3) ◽  
pp. 372 ◽  
Author(s):  
Maria Inês Couto ◽  
Ana Monteiro ◽  
Ana Oliveira ◽  
Nuno Lunet ◽  
João Massano

<p><strong>Introduction:</strong> Deep brain stimulation (DBS) is effective in advanced Parkinson’s disease (PD), improving motor symptoms, fluctuations and quality of life. However, adverse psychiatric outcomes have been reported, albeit variably and in an unstandardized fashion. We aimed to summarize the published evidence on the outcomes of anxiety and depressive symptoms in Parkinson’s disease patients following DBS, through systematic review and meta-analysis.<br /><strong>Material and Methods:</strong> PubMed was searched until May 2012 to identify studies assessing anxiety and depressive symptoms in PD patients who underwent bilateral DBS of the subthalamic nucleus (STN) or globus pallidus internus (GPi). Random effects metaanalyses were conducted for groups of at least three studies that were homogeneous regarding the design and the instruments used.<br /><strong>Results:</strong> 63 references were selected; 98.4% provided data on depression, and 38.1% on anxiety assessment scales. Two studies did not discriminate the target; from the remaining 61 references, short-term evaluation was performed in 37 (60.7%), mid-term in 36 (59.0%) and long-term in 5 (8.2%). Data on pre to postop variation was available in 57 (93.4%) reports and 16 (26.2%) presented STNDBS versus different comparison groups: GPi-DBS (n = 4 studies, 25.0%), eligible for surgery (n = 6, 37.5%), and medical treatment (n = 7, 43.8%).<br /><strong>Discussion:</strong> Improvement of depression and anxiety is apparent after DBS, more pronounced in the short-term, an effect that seems to wane in later assessments. Concerning depression, STN-DBS shows superiority against medical treatment, but not when compared to eligible for surgery control groups. The opposite is apparent for anxiety, as results favor medical treatment over STN-DBS, and STNDBS over eligible for surgery control group. Superiority of one target over the other is not evident from the results, but data slightly favors GPi for both outcomes.<br /><strong>Conclusion:</strong> The pattern and course of depressive symptoms and anxiety following DBS in PD is not clear, although both seem to improve in the short-term, especially depression following STN-DBS. Results are highly heterogeneous. Efforts should be carried out to standardize assessment procedures across centers.<br /><strong>Keywords:</strong> Parkinson’s Disease; Deep Brain Stimulation; Anxiety; Depression; Meta-Analysis.</p>


CNS Spectrums ◽  
2016 ◽  
Vol 21 (3) ◽  
pp. 258-264 ◽  
Author(s):  
Isabel Hindle Fisher ◽  
Hardev S. Pall ◽  
Rosalind D. Mitchell ◽  
Jamilla Kausar ◽  
Andrea E. Cavanna

ObjectiveApathy has been reported as a possible adverse effect of deep brain stimulation of the subthalamic nucleus (STN-DBS). We investigated the prevalence and severity of apathy in 22 patients with Parkinson’s disease (PD) who underwent STN-DBS, as well as the effects of apathy on quality of life (QOL).MethodsAll patients were assessed with the Lille Apathy Rating Scale (LARS), the Apathy Scale (AS), and the Parkinson’s Disease Questionnaire and were compared to a control group of 38 patients on pharmacotherapy alone.ResultsThere were no significant differences in the prevalence or severity of apathy between patients who had undergone STN-DBS and those on pharmacotherapy alone. Significant correlations were observed between poorer QOL and degree of apathy, as measured by the LARS (p<0.001) and the AS (p=0.021). PD-related disability also correlated with both apathy ratings (p<0.001 and p=0.017, respectively).ConclusionOur findings suggest that STN-DBS is not necessarily associated with apathy in the PD population; however, more severe apathy appears to be associated with a higher level of disability due to PD and worse QOL, but no other clinico-demographic characteristics.


Sign in / Sign up

Export Citation Format

Share Document