Relationship between jerky and sinusoidal oscillations in cervical dystonia

2019 ◽  
Vol 66 ◽  
pp. 130-137 ◽  
Author(s):  
Sinem Balta Beylergil ◽  
Aditya P. Singh ◽  
David S. Zee ◽  
Hyder A. Jinnah ◽  
Aasef G. Shaikh
Author(s):  
J. H. Butler ◽  
C. J. Humphreys

Electromagnetic radiation is emitted when fast (relativistic) electrons pass through crystal targets which are oriented in a preferential (channelling) direction with respect to the incident beam. In the classical sense, the electrons perform sinusoidal oscillations as they propagate through the crystal (as illustrated in Fig. 1 for the case of planar channelling). When viewed in the electron rest frame, this motion, a result of successive Bragg reflections, gives rise to familiar dipole emission. In the laboratory frame, the radiation is seen to be of a higher energy (because of the Doppler shift) and is also compressed into a narrower cone of emission (due to the relativistic “searchlight” effect). The energy and yield of this monochromatic light is a continuously increasing function of the incident beam energy and, for beam energies of 1 MeV and higher, it occurs in the x-ray and γ-ray regions of the spectrum. Consequently, much interest has been expressed in regard to the use of this phenomenon as the basis for fabricating a coherent, tunable radiation source.


1998 ◽  
Vol 37 (4-5) ◽  
pp. 259-262 ◽  
Author(s):  
Bjarne R. Horntvedt ◽  
Morten Rambekk ◽  
Rune Bakke

This paper presents a strategy in which mixed biological cultures are exposed to oscillating concentration levels, to improve the potential for coexistence of desired bacterial species. A mechanistic mathematical model is constructed to investigate and illustrate this strategy. This paper is focused on competition between nitrifying, denitrifying and aerobic heterotrophic bacteria in a CSTR with sludge recycle. For nitrifying and aerobic heterotrophic cultures, the effect of sinusoidal oscillations in DO levels with an amplitude of 1.0 mg/l is a 16% specific growth rate reduction compared to that at a constant DO level. The denitrifiers growth rate is increased by an average of 59%, compared to the constant DO level situation. A similar strategy has been tested in a pilot plant. It is concluded that the influence on specific growth rates is a function of the amplitude of the oscillations. The effects are greatest when concentrations fluctuate around the half saturation concentration of the rate limiting component(s).


Author(s):  
Anna Castagna ◽  
Enrico Saibene ◽  
Marina Ramella
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document