Oscillating conditions for influencing the composition of mixed biological cultures

1998 ◽  
Vol 37 (4-5) ◽  
pp. 259-262 ◽  
Author(s):  
Bjarne R. Horntvedt ◽  
Morten Rambekk ◽  
Rune Bakke

This paper presents a strategy in which mixed biological cultures are exposed to oscillating concentration levels, to improve the potential for coexistence of desired bacterial species. A mechanistic mathematical model is constructed to investigate and illustrate this strategy. This paper is focused on competition between nitrifying, denitrifying and aerobic heterotrophic bacteria in a CSTR with sludge recycle. For nitrifying and aerobic heterotrophic cultures, the effect of sinusoidal oscillations in DO levels with an amplitude of 1.0 mg/l is a 16% specific growth rate reduction compared to that at a constant DO level. The denitrifiers growth rate is increased by an average of 59%, compared to the constant DO level situation. A similar strategy has been tested in a pilot plant. It is concluded that the influence on specific growth rates is a function of the amplitude of the oscillations. The effects are greatest when concentrations fluctuate around the half saturation concentration of the rate limiting component(s).

1995 ◽  
Vol 31 (11) ◽  
pp. 173-180 ◽  
Author(s):  
M. van der Ploeg ◽  
M. E. Dennis ◽  
M. Q. de Regt

Relative abundance of Oscillatoria cf. chalybea was monitored during May-November, 1993, in 40 ponds at four catfish farms located 50-100 km apart in west central Mississippi, USA. The occurrence of O. cf.chalybea coincided with the period that water temperatures remained above 20°C. In 70% of ponds, O. cf.chalybea was present for a period of 2-20 weeks. The alga recurred in all ponds where it had been present in 1990 and 1991. The effects of temperature and light availability on growth rate and 2-methylisoborneol (MIB) production of O. cf. chalybea were studied in continuous cultures. At 28°C, maximum specific growth rates were 0.8 d−1 (24 h light) and 0.6 d−1 (14 h light :10 h dark). Algal cells contained less MIB when adapted to the shorter light cycle than when grown under continuous light. Specific growth rate of O. cf.chalybea dropped from 0.3 to 0.1 d−1 when temperature was changed from 21 to 19.5°C (14 h light).


2013 ◽  
Vol 10 (8) ◽  
pp. 5267-5280 ◽  
Author(s):  
F. H. Chang ◽  
E. C. Marquis ◽  
C. W. Chang ◽  
G. C. Gong ◽  
C. H. Hsieh

Abstract. Allometric scaling of body size versus growth rate and mortality has been suggested to be a universal macroecological pattern, as described by the metabolic theory of ecology (MTE). However, whether such scaling generally holds in natural assemblages remains debated. Here, we test the hypothesis that the size-specific growth rate and grazing mortality scale with the body size with an exponent of −1/4 after temperature correction, as MTE predicts. To do so, we couple a dilution experiment with the FlowCAM imaging system to obtain size-specific growth rates and grazing mortality of natural microphytoplankton assemblages in the East China Sea. This novel approach allows us to achieve highly resolved size-specific measurements that would be very difficult to obtain in traditional size-fractionated measurements using filters. Our results do not support the MTE prediction. On average, the size-specific growth rates and grazing mortality scale almost isometrically with body size (with scaling exponent ∼0.1). However, this finding contains high uncertainty, as the size-scaling exponent varies substantially among assemblages. The fact that size-scaling exponent varies among assemblages prompts us to further investigate how the variation of size-specific growth rate and grazing mortality can interact to determine the microphytoplankton size structure, described by normalized biomass size spectrum (NBSS), among assemblages. We test whether the variation of microphytoplankton NBSS slopes is determined by (1) differential grazing mortality of small versus large individuals, (2) differential growth rate of small versus large individuals, or (3) combinations of these scenarios. Our results indicate that the ratio of the grazing mortality of the large size category to that of the small size category best explains the variation of NBSS slopes across environments, suggesting that higher grazing mortality of large microphytoplankton may release the small phytoplankton from grazing, which in turn leads to a steeper NBSS slope. This study contributes to understanding the relative importance of bottom-up versus top-down control in shaping microphytoplankton size structure.


1998 ◽  
Vol 64 (11) ◽  
pp. 4226-4233 ◽  
Author(s):  
Pim Van Hoek ◽  
Johannes P. Van Dijken ◽  
Jack T. Pronk

ABSTRACT The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrialSaccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D= 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 atD = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D= 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.


Microbiology ◽  
2005 ◽  
Vol 151 (1) ◽  
pp. 135-143 ◽  
Author(s):  
Tiina M. Pakula ◽  
Katri Salonen ◽  
Jaana Uusitalo ◽  
Merja Penttilä

Trichoderma reesei was cultivated in chemostat cultures on lactose-containing medium. The cultures were characterized for growth, consumption of the carbon source and protein production. Secreted proteins were produced most efficiently at low specific growth rates, 0·022–0·033 h−1, the highest specific rate of total protein production being 4·1 mg g−1 h−1 at the specific growth rate 0·031 h−1. At low specific growth rates, up to 29 % of the proteins produced were extracellular, in comparison to only 6–8 % at high specific growth rates, 0·045–0·066 h−1. To analyse protein synthesis and secretion in more detail, metabolic labelling of proteins was applied to analyse production of the major secreted protein, cellobiohydrolase I (CBHI, Cel7A). Intracellular and extracellular labelled CBHI was quantified and analysed for pI isoforms in two-dimensional gels, and the synthesis and secretion rates of the molecule were determined. Both the specific rates of CBHI synthesis and secretion were highest at low specific growth rates, the optimum being at 0·031 h−1. However, at low specific growth rates the secretion rate/synthesis rate ratio was significantly lower than that at high specific growth rates, indicating that at low growth rates the capacity of cells to transport the protein becomes limiting. In accordance with the high level of protein production and limitation in the secretory capacity, the transcript levels of the unfolded protein response (UPR) target genes pdi1 and bip1 as well as the gene encoding the UPR transcription factor hac1 were induced.


1990 ◽  
Vol 68 (7) ◽  
pp. 1494-1498 ◽  
Author(s):  
Moira M. Ferguson ◽  
Roy G. Danzmann

The concentrations of RNA, DNA, and protein in white muscle from 240 uniquely tagged rainbow trout (Oncorhynchus mykiss) held at three temperatures (5, 8 (control), and 11 °C) were measured. Both RNA and RNA/DNA ratios were better predictors of recent length- and weight-specific growth rates than they were of absolute fish size. Furthermore, RNA concentrations were better predictors of growth than RNA/DNA ratios. The strength of the regression between either RNA/DNA ratio or RNA and growth rate did not differ consistently among temperatures. Fish reared at warmer temperatures had lower concentrations of RNA for both a given growth rate and a given DNA concentration compared with cold-reared trout. Warm-reared fish also had lower concentrations of DNA and higher protein/DNA ratios than cold-reared trout when fish size was standardized. The concomitant decrease in both RNA and DNA concentrations resulted in marginally lower RNA/DNA ratios in warm-reared fish.


1978 ◽  
Vol 24 (1) ◽  
pp. 28-30 ◽  
Author(s):  
Adrian P. Wills ◽  
E. C. S. Chan

When deprived of biotin, Arthrobacter globiformis 425 exhibits abnormal morphology (large, branched forms of variable size) and a retardation of its normal growth rate. In chemostat cultures, when cells were grown under glucose limitation, the morphology was normal (coccoids or rods) at specific growth rates between 0.05 and 0.125 h−1 (doubling times between 14 and 5.5 h, respectively) at 25 °C. The coccoid-to-rod morphogenesis occurs at a specific growth rate of 0.11 h−1. At the same specific growth rates and temperature, but under biotin limitation, abnormal morphology was observed.


2006 ◽  
Vol 54 (8) ◽  
pp. 155-162 ◽  
Author(s):  
Y. Mokhayeri ◽  
A. Nichols ◽  
S. Murthy ◽  
R. Riffat ◽  
P. Dold ◽  
...  

Facilities across North America are designing plants to meet stringent limits of technology (LOT) treatment for nitrogen removal (3–5 mg/L total effluent nitrogen). The anoxic capacity requirements for meeting LOT treatment are dependent on the growth rates of the denitrifying organisms. The Blue Plains Advanced Wastewater Treatment Plant (AWTP) is one of many facilities in the Chesapeake Bay region that is evaluating its ability to meet LOT treatment capability. The plant uses methanol as an external carbon source in a post-denitrification process. The process is very sensitive to denitrification in the winter. One approach to improve anoxic capacity utilization is to use an alternative substrate for denitrification in the winter to promote the growth of organisms that denitrify at higher rates. The aim of this study was to evaluate denitrification maximum specific growth rates for three substrates, acetate, corn syrup and methanol, at two temperatures (13 °C and 19 °C). These temperatures approximately reflect the minimum monthly and average annual wastewater temperature at the Blue Plains AWTP. The results suggest that the maximum specific growth rate (μmax) for corn syrup (1.3 d−1) and acetate (1.2 d−1) are higher than that for methanol (0.5 d−1) at low temperature of 13 °C. A similar trend was observed at 19 °C.


1995 ◽  
Vol 16 (3) ◽  
pp. 257-264 ◽  
Author(s):  
Carlos Frederico Duarte Rocha

AbstractThe growth of males and females of the tropidurid lizard Liolaemus lutzae was studied in the seasonal tropical habitat of the restinga da Barra de Maricá, Rio de Janeiro State, southeastern Brazil. Growth rates of lizards decreased with size in both sexes; the size specific growth rates of females were significantly lower than those of males. Adult males were larger than adult females. The data indicate that despite maturing at a larger size, males grow faster than females and mature at similar ages. There was a significant relationship between amount of rainfall and lizard growth rate in both sexes.


Author(s):  
H. Barnes

Data are presented on the growth rate of Verruca stroemia under natural conditions and when exposed continuously and cleaned repeatedly. Several series exposed at different times of the year were followed.Rapid growth takes place (under raft conditions) following settlement; the maximum size is virtually reached in one season's growth between spring and early winter. There is little growth in midwinter.Differences between the mean specific growth rates of the various series can be ascribed to differences in the availability of food.The question is discussed as to whether there is any seasonal rhythm; the evidence indicates that no marked rhythmic pattern of growth exists.Observations on deep-water populations would be of value for comparison and to unmask any relatively weak rhythmic growth.The mean specific growth rates at half their maximum size are compared for several species—Balanus balanoides, B. crenatus, B. balanus, Chthamalus stellatus and Verruca stroemia; it is similar for all species except Chthamalus stellatus. The high level barnacle may require stimulation such as is provided by wave action to elicit full metabolic activity.


Sign in / Sign up

Export Citation Format

Share Document