scholarly journals Prediagnostic Progressive Supranuclear Palsy – Insights from the UK Biobank

Author(s):  
Duncan Street ◽  
David Whiteside ◽  
Timothy Rittman ◽  
James B. Rowe
2021 ◽  
Author(s):  
Duncan Street ◽  
David Whiteside ◽  
Timothy Rittman ◽  
James Rowe

Background: Prodromal Parkinsons Disease is well described but prodromal Progressive Supranuclear Palsy (PSP) is much less understood. The diagnosis of PSP is typically delayed by an average of three years after symptom onset. Understanding the changes that occur in the prodromal and prediagnostic period will aid earlier diagnosis, clarify the natural history, and aid the design of early disease modifying therapy trials. Objectives: To determine motor and cognitive markers of prodromal PSP, with Parkinsons disease as a comparator condition, in a large prospective cohort. Methods: Baseline UK Biobank data from 502,504 individuals were collected between 2006 and 2010. Subsequent PSP and Parkinsons disease cases were identified from primary and secondary care electronic health records diagnostic coding data and death registry, with 5,404 matched controls. Results: 176 PSP cases (mean [SD] time to diagnosis 7.8 [2.8] years) and 2,526 Parkinsons disease cases (time to diagnosis 7.8 [2.9] years) were identified. At baseline, those later diagnosed with PSP had slower reaction times, weaker hand grip, lower fluid intelligence, poorer prospective memory, worse self rated health score and lower digit recall than controls. They had higher mortality than both Parkinsons disease and control groups. Conclusions: Motor slowing, cognitive dysfunction, and postural instability are clinical diagnostic features of PSP and are typically symptomatic three years before diagnosis. However, objective markers of these features are evident over seven years before diagnosis. This suggests a long prodromal course in PSP with subtle changes in motor and cognitive function.


2019 ◽  
Author(s):  
Elizabeth Curtis ◽  
Justin Liu ◽  
Kate Ward ◽  
Karen Jameson ◽  
Zahra Raisi-Estabragh ◽  
...  

2020 ◽  
Author(s):  
John E. McGeary ◽  
Chelsie Benca-Bachman ◽  
Victoria Risner ◽  
Christopher G Beevers ◽  
Brandon Gibb ◽  
...  

Twin studies indicate that 30-40% of the disease liability for depression can be attributed to genetic differences. Here, we assess the explanatory ability of polygenic scores (PGS) based on broad- (PGSBD) and clinical- (PGSMDD) depression summary statistics from the UK Biobank using independent cohorts of adults (N=210; 100% European Ancestry) and children (N=728; 70% European Ancestry) who have been extensively phenotyped for depression and related neurocognitive phenotypes. PGS associations with depression severity and diagnosis were generally modest, and larger in adults than children. Polygenic prediction of depression-related phenotypes was mixed and varied by PGS. Higher PGSBD, in adults, was associated with a higher likelihood of having suicidal ideation, increased brooding and anhedonia, and lower levels of cognitive reappraisal; PGSMDD was positively associated with brooding and negatively related to cognitive reappraisal. Overall, PGS based on both broad and clinical depression phenotypes have modest utility in adult and child samples of depression.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A273-A273
Author(s):  
Xi Zheng ◽  
Ma Cherrysse Ulsa ◽  
Peng Li ◽  
Lei Gao ◽  
Kun Hu

Abstract Introduction While there is emerging evidence for acute sleep disruption in the aftermath of coronavirus disease 2019 (COVID-19), it is unknown whether sleep traits contribute to mortality risk. In this study, we tested whether earlier-life sleep duration, chronotype, insomnia, napping or sleep apnea were associated with increased 30-day COVID-19 mortality. Methods We included 34,711 participants from the UK Biobank, who presented for COVID-19 testing between March and October 2020 (mean age at diagnosis: 69.4±8.3; range 50.2–84.6). Self-reported sleep duration (less than 6h/6-9h/more than 9h), chronotype (“morning”/”intermediate”/”evening”), daytime dozing (often/rarely), insomnia (often/rarely), napping (often/rarely) and presence of sleep apnea (ICD-10 or self-report) were obtained between 2006 and 2010. Multivariate logistic regression models were used to adjust for age, sex, education, socioeconomic status, and relevant risk factors (BMI, hypertension, diabetes, respiratory diseases, smoking, and alcohol). Results The mean time between sleep measures and COVID-19 testing was 11.6±0.9 years. Overall, 5,066 (14.6%) were positive. In those who were positive, 355 (7.0%) died within 30 days (median = 8) after diagnosis. Long sleepers (>9h vs. 6-9h) [20/103 (19.4%) vs. 300/4,573 (6.6%); OR 2.09, 95% 1.19–3.64, p=0.009), often daytime dozers (OR 1.68, 95% 1.04–2.72, p=0.03), and nappers (OR 1.52, 95% 1.04–2.23, p=0.03) were at greater odds of mortality. Prior diagnosis of sleep apnea also saw a two-fold increased odds (OR 2.07, 95% CI: 1.25–3.44 p=0.005). No associations were seen for short sleepers, chronotype or insomnia with COVID-19 mortality. Conclusion Data across all current waves of infection show that prior sleep traits/disturbances, in particular long sleep duration, daytime dozing, napping and sleep apnea, are associated with increased 30-day mortality after COVID-19, independent of health-related risk factors. While sleep health traits may reflect unmeasured poor health, further work is warranted to examine the exact underlying mechanisms, and to test whether sleep health optimization offers resilience to severe illness from COVID-19. Support (if any) NIH [T32GM007592 and R03AG067985 to L.G. RF1AG059867, RF1AG064312, to K.H.], the BrightFocus Foundation A2020886S to P.L. and the Foundation of Anesthesia Education and Research MRTG-02-15-2020 to L.G.


BMJ ◽  
2021 ◽  
pp. n214
Author(s):  
Weedon MN ◽  
Jackson L ◽  
Harrison JW ◽  
Ruth KS ◽  
Tyrrell J ◽  
...  

Abstract Objective To determine whether the sensitivity and specificity of SNP chips are adequate for detecting rare pathogenic variants in a clinically unselected population. Design Retrospective, population based diagnostic evaluation. Participants 49 908 people recruited to the UK Biobank with SNP chip and next generation sequencing data, and an additional 21 people who purchased consumer genetic tests and shared their data online via the Personal Genome Project. Main outcome measures Genotyping (that is, identification of the correct DNA base at a specific genomic location) using SNP chips versus sequencing, with results split by frequency of that genotype in the population. Rare pathogenic variants in the BRCA1 and BRCA2 genes were selected as an exemplar for detailed analysis of clinically actionable variants in the UK Biobank, and BRCA related cancers (breast, ovarian, prostate, and pancreatic) were assessed in participants through use of cancer registry data. Results Overall, genotyping using SNP chips performed well compared with sequencing; sensitivity, specificity, positive predictive value, and negative predictive value were all above 99% for 108 574 common variants directly genotyped on the SNP chips and sequenced in the UK Biobank. However, the likelihood of a true positive result decreased dramatically with decreasing variant frequency; for variants that are very rare in the population, with a frequency below 0.001% in UK Biobank, the positive predictive value was very low and only 16% of 4757 heterozygous genotypes from the SNP chips were confirmed with sequencing data. Results were similar for SNP chip data from the Personal Genome Project, and 20/21 individuals analysed had at least one false positive rare pathogenic variant that had been incorrectly genotyped. For pathogenic variants in the BRCA1 and BRCA2 genes, which are individually very rare, the overall performance metrics for the SNP chips versus sequencing in the UK Biobank were: sensitivity 34.6%, specificity 98.3%, positive predictive value 4.2%, and negative predictive value 99.9%. Rates of BRCA related cancers in UK Biobank participants with a positive SNP chip result were similar to those for age matched controls (odds ratio 1.31, 95% confidence interval 0.99 to 1.71) because the vast majority of variants were false positives, whereas sequence positive participants had a significantly increased risk (odds ratio 4.05, 2.72 to 6.03). Conclusions SNP chips are extremely unreliable for genotyping very rare pathogenic variants and should not be used to guide health decisions without validation.


Sign in / Sign up

Export Citation Format

Share Document