genetic risk factors
Recently Published Documents


TOTAL DOCUMENTS

1152
(FIVE YEARS 242)

H-INDEX

65
(FIVE YEARS 9)

2022 ◽  
Vol 13 ◽  
Author(s):  
Samuel Houle ◽  
Olga N. Kokiko-Cochran

Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kenneth E. Westerman ◽  
Joanna Lin ◽  
Magdalena del Rocio Sevilla-Gonzalez ◽  
Beza Tadess ◽  
Casey Marchek ◽  
...  

Increasing evidence indicates that specific genetic variants influence the severity of outcomes after infection with COVID-19. However, it is not clear whether the effect of these genetic factors is independent of the risk due to more established non-genetic demographic and metabolic risk factors such as male sex, poor cardiometabolic health, and low socioeconomic status. We sought to identify interactions between genetic variants and non-genetic risk factors influencing COVID-19 severity via a genome-wide interaction study in the UK Biobank. Of 378,051 unrelated individuals of European ancestry, 2,402 were classified as having experienced severe COVID-19, defined as hospitalization or death due to COVID-19. Exposures included sex, cardiometabolic risk factors [obesity and type 2 diabetes (T2D), tested jointly], and multiple deprivation index. Multiplicative interaction was tested using a logistic regression model, conducting both an interaction test and a joint test of genetic main and interaction effects. Five independent variants reached genome-wide significance in the joint test, one of which also reached significance in the interaction test. One of these, rs2268616 in the placental growth factor (PGF) gene, showed stronger effects in males and in individuals with T2D. None of the five variants showed effects on a similarly-defined phenotype in a lookup in the COVID-19 Host Genetics Initiative. These results reveal potential additional genetic loci contributing to COVID-19 severity and demonstrate the value of including non-genetic risk factors in an interaction testing approach for genetic discovery.


2022 ◽  
Vol 3 ◽  
Author(s):  
Sally Mortlock ◽  
Brett McKinnon ◽  
Grant W. Montgomery

The endometrium is a complex and dynamic tissue essential for fertility and implicated in many reproductive disorders. The tissue consists of glandular epithelium and vascularised stroma and is unique because it is constantly shed and regrown with each menstrual cycle, generating up to 10 mm of new mucosa. Consequently, there are marked changes in cell composition and gene expression across the menstrual cycle. Recent evidence shows expression of many genes is influenced by genetic variation between individuals. We and others have reported evidence for genetic effects on hundreds of genes in endometrium. The genetic factors influencing endometrial gene expression are highly correlated with the genetic effects on expression in other reproductive (e.g., in uterus and ovary) and digestive tissues (e.g., salivary gland and stomach), supporting a shared genetic regulation of gene expression in biologically similar tissues. There is also increasing evidence for cell specific genetic effects for some genes. Sample size for studies in endometrium are modest and results from the larger studies of gene expression in blood report genetic effects for a much higher proportion of genes than currently reported for endometrium. There is also emerging evidence for the importance of genetic variation on RNA splicing. Gene mapping studies for common disease, including diseases associated with endometrium, show most variation maps to intergenic regulatory regions. It is likely that genetic risk factors for disease function through modifying the program of cell specific gene expression. The emerging evidence from our gene mapping studies coupled with tissue specific studies, and the GTEx, eQTLGen and EpiMap projects, show we need to expand our understanding of the complex regulation of gene expression. These data also help to link disease genetic risk factors to specific target genes. Combining our data on genetic regulation of gene expression in endometrium, and cell types within the endometrium with gene mapping data for endometriosis and related diseases is beginning to uncover the specific genes and pathways responsible for increased risk of these diseases.


2022 ◽  
Author(s):  
Yuanyuan Fu ◽  
Devin Takahashi ◽  
Vedbar Khadka ◽  
Masaki Nasu ◽  
Mayumi Jijiwa ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Lindsey Rubin ◽  
Lucy A. Ingram ◽  
Nicholas V. Resciniti ◽  
Brianna Ashford-Carroll ◽  
Katherine Henrietta Leith ◽  
...  

Objectives: As the United States (U.S.) population rapidly ages, the incidence of Alzheimer's Disease and Related Dementias (ADRDs) is rising, with racial/ethnic minorities affected at disproportionate rates. Much research has been undertaken to test, sequence, and analyze genetic risk factors for ADRDs in Caucasian populations, but comparatively little has been done with racial/ethnic minority populations. We conducted a scoping review to examine the nature and extent of the research that has been published about the genetic factors of ADRDs among racial/ethnic minorities in the U.S.Design: Using an established scoping review methodological framework, we searched electronic databases for articles describing peer-reviewed empirical studies or Genome-Wide Association Studies that had been published 2005–2018 and focused on ADRD-related genes or genetic factors among underrepresented racial/ethnic minority population in the U.S.Results: Sixty-six articles met the inclusion criteria for full text review. Well-established ADRD genetic risk factors for Caucasian populations including APOE, APP, PSEN1, and PSEN2 have not been studied to the same degree in minority U.S. populations. Compared to the amount of research that has been conducted with Caucasian populations in the U.S., racial/ethnic minority communities are underrepresented.Conclusion: Given the projected growth of the aging population and incidence of ADRDs, particularly among racial/ethnic minorities, increased focus on this important segment of the population is warranted. Our review can aid researchers in developing fundamental research questions to determine the role that ADRD risk genes play in the heavier burden of ADRDs in racial/ethnic minority populations.


2021 ◽  
Vol 118 (52) ◽  
pp. e2112095118
Author(s):  
Matthew J. Moulton ◽  
Scott Barish ◽  
Isha Ralhan ◽  
Jinlan Chang ◽  
Lindsey D. Goodman ◽  
...  

A growing list of Alzheimer’s disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP. Our data also show that ROS enhances Aβ42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.


2021 ◽  
Vol 15 ◽  
Author(s):  
Samar S. M. Elsheikh ◽  
Emile R. Chimusa ◽  
Nicola J. Mulder ◽  
Alessandro Crimi ◽  

Networks are present in many aspects of our lives, and networks in neuroscience have recently gained much attention leading to novel representations of brain connectivity. The integration of neuroimaging characteristics and genetics data allows a better understanding of the effects of the gene expression on brain structural and functional connections. The current work uses whole-brain tractography in a longitudinal setting, and by measuring the brain structural connectivity changes studies the neurodegeneration of Alzheimer's disease. This is accomplished by examining the effect of targeted genetic risk factors on the most common local and global brain connectivity measures. Furthermore, we examined the extent to which Clinical Dementia Rating relates to brain connections longitudinally, as well as to gene expression. For instance, here we show that the expression of PLAU gene increases the change over time in betweenness centrality related to the fusiform gyrus. We also show that the betweenness centrality metric impact dementia-related changes in distinct brain regions. Our findings provide insights into the complex longitudinal interplay between genetics and brain characteristics and highlight the role of Alzheimer's genetic risk factors in the estimation of regional brain connectivity alterations.


2021 ◽  
pp. jmedgenet-2021-108186
Author(s):  
Yuki Taniguchi ◽  
Norifumi Takeda ◽  
Ryo Inuzuka ◽  
Yoshitaka Matsubayashi ◽  
So Kato ◽  
...  

BackgroundAmong the several musculoskeletal manifestations in patients with Marfan syndrome, spinal deformity causes pain and respiratory impairment and is a great hindrance to patients’ daily activities. The present study elucidates the genetic risk factors for the development of severe scoliosis in patients with Marfan syndrome.MethodsWe retrospectively evaluated 278 patients with pathogenic or likely pathogenic FBN1 variants. The patients were divided into those with (n=57) or without (n=221) severe scoliosis. Severe scoliosis was defined as (1) patients undergoing surgery before 50 years of age or (2) patients with a Cobb angle exceeding 50° before 50 years of age. The variants were classified as protein-truncating variants (PTVs), which included variants creating premature termination codons and inframe exon-skipping, or non-PTVs, based on their location and predicted amino acid alterations, and the effect of the FBN1 genotype on the development of severe scoliosis was examined. The impact of location of FBN1 variants on the development of severe scoliosis was also investigated.ResultsUnivariate and multivariate analyses revealed that female sex, PTVs of FBN1 and variants in the neonatal region (exons 25–33) were all independent significant predictive factors for the development of severe scoliosis. Furthermore, these factors were identified as predictors of progression of existing scoliosis into severe state.ConclusionsWe elucidated the genetic risk factors for the development of severe scoliosis in patients with Marfan syndrome. Patients harbouring pathogenic FBN1 variants with these genetic risk factors should be monitored carefully for scoliosis progression.


Sign in / Sign up

Export Citation Format

Share Document