scholarly journals Two-stream collaborative network for multi-label chest X-ray Image classification with lung segmentation

2020 ◽  
Vol 135 ◽  
pp. 221-227 ◽  
Author(s):  
Bingzhi Chen ◽  
Zheng Zhang ◽  
Jianyong Lin ◽  
Yi Chen ◽  
Guangming Lu
Author(s):  
Tengku Afiah Mardhiah Tengku Zainul Akmal ◽  
Joel Chia Ming Than ◽  
Haslailee Abdullah ◽  
Norliza Mohd Noor

Author(s):  
Vishu Madaan ◽  
Aditya Roy ◽  
Charu Gupta ◽  
Prateek Agrawal ◽  
Anand Sharma ◽  
...  

AbstractCOVID-19 (also known as SARS-COV-2) pandemic has spread in the entire world. It is a contagious disease that easily spreads from one person in direct contact to another, classified by experts in five categories: asymptomatic, mild, moderate, severe, and critical. Already more than 66 million people got infected worldwide with more than 22 million active patients as of 5 December 2020 and the rate is accelerating. More than 1.5 million patients (approximately 2.5% of total reported cases) across the world lost their life. In many places, the COVID-19 detection takes place through reverse transcription polymerase chain reaction (RT-PCR) tests which may take longer than 48 h. This is one major reason of its severity and rapid spread. We propose in this paper a two-phase X-ray image classification called XCOVNet for early COVID-19 detection using convolutional neural Networks model. XCOVNet detects COVID-19 infections in chest X-ray patient images in two phases. The first phase pre-processes a dataset of 392 chest X-ray images of which half are COVID-19 positive and half are negative. The second phase trains and tunes the neural network model to achieve a 98.44% accuracy in patient classification.


Author(s):  
Preeti Arora ◽  
Saksham Gera ◽  
Vinod M Kapse
Keyword(s):  
X Ray ◽  

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7116
Author(s):  
Lucas O. Teixeira ◽  
Rodolfo M. Pereira ◽  
Diego Bertolini ◽  
Luiz S. Oliveira ◽  
Loris Nanni ◽  
...  

COVID-19 frequently provokes pneumonia, which can be diagnosed using imaging exams. Chest X-ray (CXR) is often useful because it is cheap, fast, widespread, and uses less radiation. Here, we demonstrate the impact of lung segmentation in COVID-19 identification using CXR images and evaluate which contents of the image influenced the most. Semantic segmentation was performed using a U-Net CNN architecture, and the classification using three CNN architectures (VGG, ResNet, and Inception). Explainable Artificial Intelligence techniques were employed to estimate the impact of segmentation. A three-classes database was composed: lung opacity (pneumonia), COVID-19, and normal. We assessed the impact of creating a CXR image database from different sources, and the COVID-19 generalization from one source to another. The segmentation achieved a Jaccard distance of 0.034 and a Dice coefficient of 0.982. The classification using segmented images achieved an F1-Score of 0.88 for the multi-class setup, and 0.83 for COVID-19 identification. In the cross-dataset scenario, we obtained an F1-Score of 0.74 and an area under the ROC curve of 0.9 for COVID-19 identification using segmented images. Experiments support the conclusion that even after segmentation, there is a strong bias introduced by underlying factors from different sources.


2019 ◽  
Vol 177 ◽  
pp. 285-296 ◽  
Author(s):  
Johnatan Carvalho Souza ◽  
João Otávio Bandeira Diniz ◽  
Jonnison Lima Ferreira ◽  
Giovanni Lucca França da Silva ◽  
Aristófanes Corrêa Silva ◽  
...  

Author(s):  
Hemalatha Munusamy ◽  
Karthikeyan JM ◽  
Shriram G ◽  
Thanga Revathi S ◽  
Aravindkumar S

Sign in / Sign up

Export Citation Format

Share Document