Combinational anti-tumor effects of photodynamic therapy and sonodynamic therapy in breast cancer cells using in vivo studies

2017 ◽  
Vol 17 ◽  
pp. A56
Author(s):  
Yong-Wan Kim ◽  
Hwan Suk Lee ◽  
Kwang Hee Son ◽  
Jeong Whan Lee ◽  
Yang Gu Lee
Author(s):  
Jose Russo ◽  
Ricardo Lopez de Cicco ◽  
Thomas J. Pogash ◽  
Irma H. Russo

2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Gargi Maity ◽  
Archana De ◽  
Snigdha Banerjee ◽  
Amlan Das ◽  
Sushanta Banerjee

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Therina Du Toit ◽  
Amanda C Swart

Abstract The metabolism of 11β-hydroxyandrostenedione (11OHA4), a major adrenal C19 steroid, was first characterised in our in vitro prostate models showing that 11OHA4, catalysed by 11βHSDs, 17βHSDs and 5α-reductases, yields potent androgens, 11keto-testosterone (11KT) and 11keto-dihydrotestosterone (11KDHT) in the 11OHA4-pathway [1]. Findings have since led to the analysis of C11-oxy steroids in PCOS, CAH and 21OHD. However, the only circulating C11-oxy steroids included to date have been 11OHA4, 11keto-androstenedione (11KA4), 11β-hydroxytestosterone (11OHT) and 11KT, with 11KT reported as the only potent androgen produced from 11OHA4. We have identified higher levels of 11KDHT compared to 11KT in prostate cancer tissue and benign prostatic hyperplasia tissue and serum, with data suggesting impeded glucuronidation of the C11-oxy androgens [2,3]. The assessment of 11KDHT and the inactivation/conjugation of the C11-oxy steroids in clinical conditions is therefore crucial. We investigated the metabolism of testosterone, 11KT, 11OHT, dihydrotestosterone, 11KDHT and 11OHDHT in JEG-3 placenta choriocarcinoma, MCF-7 BUS and T-47D breast cancer cells, focusing on glucuronidation and sulfation. Steroids were assayed at 1 µM and metabolites were quantified using UPC2-MS/MS. Conjugated steroids were not detected in JEG-3 cells with DHT (0.6 µM remaining) metabolised to 5α-androstane-3α,17β-diol and androsterone (AST), and 11KDHT (0.9 µM remaining) to 11OHAST and 11KAST. 11OHA4 was converted to 11KA4 (12%) and 11KT (2.5%); and 11KT to 11KDHT (14%). In MCF-7 BUS cells, DHT was significantly glucuronidated, whereas 11KDHT was not. 11KAST was the only steroid in the MCF-7 BUS and T-47D cells that was significantly sulfated (p<0.05). In parallel we investigated sulfation in the LNCaP prostate model. Comparing sulfated to glucuronidated levels, only DHT was sulfated, 26%. Analysis showed that C19 steroids were significantly conjugated (glucuronidated + sulfated) compared to the C11-oxy C19 steroids. As there exists an intricate interplay between steroid production and inactivation, impacting pre- and post-receptor activation, efficient conjugation would limit adverse downstream effects. Our data demonstrates the production and impeded conjugation of active C11-oxy C19 steroids, allowing the prolonged presence of androgenic steroids in the cellular microenvironment. Identified for the first time is the 11OHA4-pathway in placenta and breast cancer cells, and the sulfation of 11KAST. Characterising steroidogenic pathways in in vitro models paves the direction for in vivo studies associated with characterising clinical disorders and disease, which the C11-oxy C19 steroids and their intermediates, including inactivated and conjugated end-products, have highlighted. [1] Bloem, et al. JSBMB 2015, 153; [2] Du Toit & Swart. MCE 2018, 461; [3] Du Toit & Swart, JSBMB 2020, 105497.


2014 ◽  
Vol 11 (3) ◽  
pp. 426-433
Author(s):  
Margarete K. Akens ◽  
Lisa Wise-Milestone ◽  
Emily Won ◽  
Joerg Schwock ◽  
Albert J.M. Yee ◽  
...  

2021 ◽  
Author(s):  
Fatemeh Mawalizadeh ◽  
Ghorban Mohammadzadeh ◽  
azam khedri ◽  
mojtaba rashidi

Abstract Background: breast cancer is one of the leading causes of cancer mortality worldwide. 5-fluorouracil (5-FU) is one of the chemotherapy drugs to treat breast cancer, but it is associated with several side effects. Combination therapy is a way to increase the effectiveness of chemo drugs and decrease their usage dose. Quercetin (Quer) is one of the natural polyphenols with anti-cancer properties. This study investigated the apoptotic effect of 5-FU in combination with Quer compared with 5-FU alone on MCF7 breast cancer cells.Method and Results: Different single and combined concentrations of 5-FU and Quer were applied to MCF 7 cells for 48 hours. Cell viability, apoptosis, gene expression of Bax and Bcl2, and colony number were assessed using MTT assay, flow cytometry, quantitative real-time PCR, and Colony formation assay, respectively. The combination of 5-FU and Quer compared to 5-FU alone improved apoptosis by increasing and decreasing the gene expression of Bax and Bcl2, respectively, and decreased colony formation in MCF7 cells.Conclusion: Quer potentiates the sensitivity of breast cancer to 5-FU so that this combination may be proposed as a treatment for breast cancer. Therefore, this combination can be suggested for future in vivo studies.


2020 ◽  
Vol 20 (11) ◽  
pp. 1352-1367 ◽  
Author(s):  
Gabrielle Marconi Zago Ferreira Damke ◽  
Raquel Pantarotto Souza ◽  
Maiara Camotti Montanha ◽  
Edilson Damke ◽  
Renato Sonchini Gonçalves ◽  
...  

Background: Breast cancer is the most relevant type of cancer and the second cause of cancer- related deaths among women in general. Currently, there is no effective treatment for breast cancer although advances in its initial diagnosis and treatment are available. Therefore, the value of novel anti-tumor therapeutic modalities remains an immediate unmet need in clinical practice. Following our previous work regarding the properties of the Pluronics with different photosensitizers (PS) for photodynamic therapy (PDT), in this study we aimed to evaluate the efficacy of supersaturated hypericin (HYP) encapsulated on Pluronic® P123 (HYP/P123) against breast cancer cells (MCF-7) and non-tumorigenic breast cells (MCF-10A). Methods: Cell internalization and subcellular distribution of HYP/P123 was confirmed by fluorescence microscopy. The phototoxicity and citototoxicity of HYP/P123 was assessed by trypan blue exclusion assay in the presence and absence of light. Long-term cytotoxicity was performed by clonogenic assay. Cell migration was determined by the wound-healing assay. Apoptosis and necrosis assays were performed by annexin VFITC/ propidium Iodide (PI) by fluorescence microscopy. Results: Our results showed that HYP/P123 micelles had high stability and high rates of binding to cells, which resulted in the selective internalization in MCF-7, indicating their potential to permeate the membrane of these cells. Moreover, HYP/P123 micelles accumulated in mitochondria and endoplasmic reticulum organelles, resulting in the photodynamic cell death by necrosis. Additionally, HYP/P123 micelles showed effective and selective time- and dose dependent phototoxic effects on MCF-7 cells but little damage to MCF-10A cells. HYP/P123 micelles inhibited the generation of cellular colonies, indicating a possible capability to prevent the recurrence of breast cancer. We also demonstrated that HYP/P123 micelles inhibit the migration of tumor cells, possibly by decreasing their ability to form metastases. Conclusion: Taken together, the results presented here indicate a potentially useful role of HYP/P123 micelles as a platform for HYP delivery to more specifically and effectively treat human breast cancers through photodynamic therapy, suggesting they are worthy for in vivo preclinical evaluations.


Sign in / Sign up

Export Citation Format

Share Document