Oxy-fuel combustion technology for coal-fired power generation

2005 ◽  
Vol 31 (4) ◽  
pp. 283-307 ◽  
Author(s):  
B.J.P. Buhre ◽  
L.K. Elliott ◽  
C.D. Sheng ◽  
R.P. Gupta ◽  
T.F. Wall
2006 ◽  
Vol 129 (4) ◽  
pp. 713-718 ◽  
Author(s):  
Hiroaki Hatanaka ◽  
Nobukazu Ido ◽  
Takuya Ito ◽  
Ryota Uemichi ◽  
Minoru Tagami ◽  
...  

Boiler piping of fossil-fuel combustion power generation plants are exposed to high-temperature and high-pressure environments, and failure of high-energy piping due to creep damage has been a concern. Therefore, a precise creep damage assessment method is needed. This paper proposes a nondestructive method for creep damage detection of piping in fossil-fuel combustion power generation plants by ultrasonic testing. Ultrasonic signals are transformed to signals in a frequency domain by Fourier transform, and a specific frequency band is chosen. To determine the creep damage, the spectrum intensities are calculated. Calculated intensities have a good correlation to life consumption of the weld joints, and this method is able to predict the remaining life of high-temperature piping, which has been already installed.


Author(s):  
M. Sato ◽  
T. Abe ◽  
T. Ninomiya ◽  
T. Nakata ◽  
T. Yoshine ◽  
...  

From the view point of future coal utilization technology for the thermal power generation systems, the coal gasification combined cycle system has drawn special interest recently. In the coal gasification combined cycle power generation system, it is necessary to develop a high temperature gas turbine combustor using a low-BTU gas (LBG) which has high thermal efficiency and low emissions. In Japan a development program of the coal gasification combined cycle power generation system has started in 1985 by the national government and Japanese electric companies. In this program, 1300°C class gas turbines will be developed. If the fuel gas cleaning system is a hot type, the coal gaseous fuel to be supplied to gas turbines will contain ammonia. Ammonia will be converted to nitric oxides in the combustion process in gas turbines. Therefore, low fuel-NOx combustion technology will be one of the most important research subjects. This paper describes low fuel-NOx combustion technology for 1300°C class gas turbine combustors using coal gaseous low-BTU fuel as well as combustion characteristics and carbon monoxide emission characteristics. Combustion tests were conducted using a full-scale combustor used for the 150 MW gas turbine at the atmospheric pressure. Furthermore, high pressure combustion tests were conducted using a half-scale combustor used for the 1 50 MW gas turbine.


Author(s):  
Andrea Ciani ◽  
John P. Wood ◽  
Anders Wickström ◽  
Geir J. Rørtveit ◽  
Rosetta Steeneveldt ◽  
...  

Abstract Today gas turbines and combined cycle power plants play an important role in power generation and in the light of increasing energy demand, their role is expected to grow alongside renewables. In addition, the volatility of renewables in generating and dispatching power entails a new focus on electricity security. This reinforces the importance of gas turbines in guaranteeing grid reliability by compensating for the intermittency of renewables. In order to achieve the Paris Agreement’s goals, power generation must be decarbonized. This is where hydrogen produced from renewables or with CCS (Carbon Capture and Storage) comes into play, allowing totally CO2-free combustion. Hydrogen features the unique capability to store energy for medium to long storage cycles and hence could be used to alleviate seasonal variations of renewable power generation. The importance of hydrogen for future power generation is expected to increase due to several factors: the push for CO2-free energy production is calling for various options, all resulting in the necessity of a broader fuel flexibility, in particular accommodating hydrogen as a future fuel feeding gas turbines and combined cycle power plants. Hydrogen from methane reforming is pursued, with particular interest within energy scenarios linked with carbon capture and storage, while the increased share of renewables requires the storage of energy for which hydrogen is the best candidate. Compared to natural gas the main challenge of hydrogen combustion is its increased reactivity resulting in a decrease of engine performance for conventional premix combustion systems. The sequential combustion technology used within Ansaldo Energia’s GT36 and GT26 gas turbines provides for extra freedom in optimizing the operation concept. This sequential combustion technology enables low emission combustion at high temperatures with particularly high fuel flexibility thanks to the complementarity between its first stage, stabilized by flame propagation and its second (sequential) stage, stabilized by auto-ignition. With this concept, gas turbines are envisaged to be able to provide reliable, dispatchable, CO2-free electric power. In this paper, an overview of hydrogen production (grey, blue, and green hydrogen), transport and storage are presented targeting a CO2-free energy system based on gas turbines. A detailed description of the test infrastructure, handling of highly reactive fuels is given with specific aspects of the large amounts of hydrogen used for the full engine pressure tests. Based on the results discussed at last year’s Turbo Expo (Bothien et al. GT2019-90798), further high pressure test results are reported, demonstrating how sequential combustion with novel operational concepts is able to achieve the lowest emissions, highest fuel and operational flexibility, for very high combustor exit temperatures (H-class) with unprecedented hydrogen contents.


Fuel ◽  
2020 ◽  
Vol 267 ◽  
pp. 117206
Author(s):  
Changwon Yang ◽  
Youngdoo Kim ◽  
Byeongryeol Bang ◽  
Soohwa Jeong ◽  
Jihong Moon ◽  
...  

2014 ◽  
Vol 552 ◽  
pp. 298-303
Author(s):  
Yue Guo ◽  
Fang Qin Dai ◽  
Ni Pan

Oxygen-enriched combustion technology is an energy efficient combustion technology, which can intensify the flame stability, increase the temperature and reduce fuel consumption. Aiming at forge furnace as research object, the effects of oxygen-enriched concentration in combustion air on thermal parameters is studied. The mainly thermal parameter included the fuel combustion procedure, thermal transfer, heating time and the amount of fuel combustion. The results show that with the oxygen concentration increasing, the gas emission coefficient and radiation coefficient is higher. While the heating time, the volume of combustion air requirement, flue gas production and fuel consumption is decreased. Additionally, the study suggests that forge furnace can obtain maximize economic benefit when oxygen concentration is about 30%.


2015 ◽  
Author(s):  
Fábio Santos Nascimento ◽  
Marco Antônio Rosa do Nascimento ◽  
Christian Jeremi Rodriguez Coronado ◽  
Lucilene de Oliveira Rodrigues ◽  
João Andrade de Carvalho Junior ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document