scholarly journals Detailed chemical kinetic models for the low-temperature combustion of hydrocarbons with application to gasoline and diesel fuel surrogates

2008 ◽  
Vol 34 (4) ◽  
pp. 440-498 ◽  
Author(s):  
F. Battin-Leclerc
2018 ◽  
Vol 22 (5) ◽  
pp. 2039-2052 ◽  
Author(s):  
Urban Zvar-Baskovic ◽  
Rok Vihar ◽  
Samuel Rodman-Opresnik ◽  
Tomaz Katrasnik

In the presented study, low temperature combustion was established with a direct injection of diesel fuel being a representative of high reactivity fuels and tire pyrolysis oil being a representative of low reactivity fuels. Tire pyrolysis oil was tested as a potential waste derived fuel for low temperature combustion, as it features diesel-like physical properties and lower cetane number compared to diesel fuel. The goal of this study was determination of suitable injection strategies and exhaust gas re-circulation rates to explore potentials of both fuels in reducing emissions in low temperature combustion modes. It was demonstrated that relatively small changes in the engine control strategy possess the potential to significantly improve NOx/particulate matter trade-off with minor effect on engine efficiency. In addition, low temperature combustion was for the first time successfully demonstrated with tire pyrolysis oil fuel, however, it was shown that lower re-activity of the fuel is by itself not sufficient to improve NOx /soot trade-off compared to the diesel fuel as entire spectra of fuel properties play an important role in improving NOx /soot trade-off. This study thus establishes relations between different engine control strategies, intake manifold pressure and exhaust gas recirculation rate on engine thermodynamic parameters and engine-out emissions while utilizing innovative waste derived fuel that have not yet been analysed in similar combustion concepts.


Author(s):  
Andrea Aniello ◽  
Lorenzo Bartolucci ◽  
Stefano Cordiner ◽  
Vincenzo Mulone ◽  
Sundar R. Krishnan ◽  
...  

Over the last few decades, emissions regulations for internal combustion engines have become increasingly restrictive, pushing researchers around the world to exploit innovative propulsion solutions. Among them, the dual fuel low temperature combustion (LTC) strategy has proven capable of reducing fuel consumption and while meeting emissions regulations for oxides of nitrogen (NOx) and particulate matter (PM) without problematic aftertreatment systems. However, further investigations are still needed to reduce engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions as well as to extend the operational range and to further improve the performance and efficiency of dual-fuel engines. In this scenario, the present study focuses on numerical simulation of fumigated methane-diesel dual fuel LTC in a single-cylinder research engine (SCRE) operating at low load and high methane percent energy substitution (PES). Results are validated against experimental cylinder pressure and apparent heat release rate (AHRR) data. A 3D full-cylinder RANS simulation is used to thoroughly understand the influence of the start of injection (SOI) of diesel fuel on the overall combustion behavior, clarifying the causes of AHRR transition from two-stage AHRR at late SOIs to single-stage AHRR at early SOIs, low temperature heat release (LTHR) behavior, as well as high HC production. The numerical campaign shows that it is crucial to reliably represent the interaction between the diesel spray and the in-cylinder charge to match both local and overall methane energy fraction, which in turn, ensures a proper representation of the whole combustion. To that aim, even a slight deviation (∼3%) of the trapped mass or of the thermodynamic conditions would compromise the numerical accuracy, highlighting the importance of properly capturing all the phenomena occurring during the engine cycle. The comparison between numerical and experimental AHRR curves shows the capability of the numerical framework proposed to correctly represent the dual-fuel combustion process, including low temperature heat release (LTHR) and the transition from two-stage to single stage AHRR with advancing SOI. The numerical simulations allow for quantitative evaluation of the residence time of vapor-phase diesel fuel inside the combustion chamber and at the same time tracking the evolution of local diesel mass fraction during ignition delay — showing their influence on the LTHR phenomena. Oxidation regions of diesel and ignition points of methane are also displayed for each case, clarifying the reasons for the observed differences in combustion evolution at different SOIs.


2008 ◽  
Vol 1 (1) ◽  
pp. 1057-1082 ◽  
Author(s):  
Glen C. Martin ◽  
Charles J. Mueller ◽  
David M. Milam ◽  
Michael S. Radovanovic ◽  
Christopher R. Gehrke

2020 ◽  
pp. 146808742096085
Author(s):  
Anand Krishnasamy ◽  
Saurabh K Gupta ◽  
Rolf D Reitz

Low Temperature Combustion (LTC) strategies are most promising to simultaneously reduce oxides of nitrogen (NOx) and soot emissions from diesel engines along with offering higher thermal efficiency. Commercial wide spread implementation of diesel LTC strategies requires several challenges to be addressed, including lack of precise ignition timing control, widening the narrow operating load ranges and reducing high unburned fuel emissions. These challenges can be addressed through modifications in the engine or fuel design or both. The timing and rate of combustion in several LTC strategies are controlled primarily by the chemical kinetics of the fuel. Since, diesel fuel reactivity and volatility are tailor-made to perform well under conventional diesel combustion conditions, its application in LTC poses several problems, as highlighted in this paper. Hence, it is important to identify suitable alternative fuels for the different diesel LTC strategies. The published literature on LTC over the past 25 years is critically analyzed to discuss the evolution of the different diesel LTC strategies, their operability limits, the challenges and the controlling parameters for each strategy. This is followed by in-depth analysis of the role of the fuel and the fuel requirements for each strategy. Further, the importance of adopting a hybrid surrogate modeling approach to enable numerical simulation of diesel LTC is highlighted. A novel attempt of relating various diesel low temperature combustion (LTC) strategies based on the approach followed to achieve positive ignition dwell through different injection strategies, utilizing high exhaust gas recirculation (EGR), and dual fuels is presented. The need for replacing diesel with alternative liquid fuels in LTC strategies is presented by highlighting the fundamental problems associated with diesel fuel characteristics. The review concludes by suggesting potential alternative fuels for various diesel LTC strategies and provides directions for future work to address the challenges facing compression ignition LTC operation.


2021 ◽  
pp. 146808742110313
Author(s):  
Gaurav Guleria ◽  
Dario Lopez-Pintor ◽  
John E Dec ◽  
Dimitris Assanis

Partial fuel stratification (PFS) is a low temperature combustion strategy that can alleviate high heat release rates of traditional low temperature combustion strategies by introducing compositional stratification in the combustion chamber using a split fuel injection strategy. In this study, a three-dimensional computational fluid dynamics (CFD) model with large eddy simulations and reduced detailed chemistry was used to model partial fuel stratification at three different stratified conditions. The double direct injection strategy injects 80% of the total fuel mass at −300 CAD aTDC and the remaining 20% of the fuel mass is injected at three different timings of −160, −50, −35 CAD to create low, medium, and high levels of compositional stratification, respectively. The PFS simulations were validated using experiments performed at Sandia National Laboratories on a single-cylinder research engine that operates on RD5-87, a research-grade E10 gasoline. The objective of this study is to compare the performance of three different reduced chemical kinetic mechanisms, namely SKM1, SKM2, and SKM3, at the three compositional stratification levels and identify the most suitable mechanism to reproduce the experimental data. Zero-dimensional chemical kinetic simulations were also performed to further understand differences in performance of the three reduced chemical kinetic mechanisms to explain variations in CFD derived heat release profiles. The modeling results indicate that SKM3 is the most suitable mechanism for partial fuel stratification modeling of research-grade gasoline. The results also show that the autoignition event progresses from the richer to the leaner compositional regions in the combustion chamber. Notably, the leaner regions that have less mass per unit volume, can contribute disproportionately more toward heat release as there are more cells at leaner equivalence ratio ranges. Overall, this study illuminates the underlying compositional stratification phenomena that control the heat release process in PFS combustion.


2013 ◽  
Author(s):  
Anand Krishnasamy ◽  
Rolf D. Reitz ◽  
Werner Willems ◽  
Eric Kurtz

Sign in / Sign up

Export Citation Format

Share Document