fuel stratification
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 32)

H-INDEX

18
(FIVE YEARS 4)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122751
Author(s):  
Yizi Zhu ◽  
Yanzhi Zhang ◽  
Zhixia He ◽  
Qian Wang ◽  
Weimin Li

2021 ◽  
Vol 13 (23) ◽  
pp. 13096
Author(s):  
Le Zhao ◽  
Yu Zhang ◽  
Yuanjiang Pei ◽  
Anqi Zhang ◽  
Muhsin M Ameen

A closed-cycle, three-dimensional (3D) computational fluid dynamics (CFD) analysis campaign was conducted to evaluate the performance of using spark plugs to assist gasoline compression ignition (GCI) combustion during cold idle operations. A conventional spark plug using single-sided J-strap design was put at a location on the cylinder head to facilitate spray-guided spark assistance. Ignition was modeled with an L-type energy distribution to depict the breakdown and the arc-to-glow phases during the energy discharge process. Several key design parameters were investigated, including injector clocking, number of nozzle holes, spray inclusion angle, number of fuel injections, fuel split ratio, and fuel injection timings. The study emphasized the region around the spark gap, focusing on flame kernel formation and development and local equivalence ratio distribution. Flame kernel development and the ignition process were found to correlate strongly with the fuel stratification and the flow velocity near the spark gap. The analysis results showed that the flame kernel development followed the direction of the local flow field. In addition, the local fuel stratification notably influenced early-stage flame kernel development due to varying injection spray patterns and the fuel injection strategies. Among these design parameters, the number of nozzle holes and fuel injection timing had the most significant effects on the engine combustion performance.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012160
Author(s):  
V S Kumbhar ◽  
A S Shahare ◽  
G K Awari

Abstract Reactivity controlled compression ignition (RCCI) has great potential for a simultaneous reduction in Nitrogen oxides (NOx) and particulate matter (PM) with increase in thermal efficiency. In this experimentation, an attempt is made to investigate the effect of injection pressure on the performance emission and combustion characteristics of single cylinder RCCI engine. Literature reveals that injection pressure has a great influence on the quality of charge preparation, fuel stratification, and incylinder reactivity. Suitably modified engine was operated for 0 to 12 kg loads, for 400 to 700 injection pressure. The blend of ethanol gasoline E20 used as a low reactivity fuel and blend of diesel jatropha biodiesel B20 used as a high reactivity fuel. Experimental results showed that increase in injection pressure enhances the degree of charge homogeneity, reduces the combustion duration, and provides higher rate of energy release. For 12 kg load and 700 bar injection pressure, it is observed that 5% rise in thermal efficiency, 27% reduction in smoke opacity, 2% reduction in HC, 4% reduction in CO and 20% rise in NOx as compared to 400 bar injection pressure.


2021 ◽  
Author(s):  
Chao Xu ◽  
Muhsin Ameen ◽  
Pinaki Pal ◽  
Sibendu Som

Abstract Partial fuel stratification (PFS) is a promising fuel injection strategy to stabilize lean premixed combustion in spark-ignition (SI) engines. PFS creates a locally stratified mixture by injecting a fraction of the fuel, just before spark timing, into the engine cylinder containing homogeneous lean fuel/air mixture. This locally stratified mixture, when ignited, results in complex flame structure and propagation modes similar to partially premixed flames, and allows for faster and more stable flame propagation than a homogeneous lean mixture. This study focuses on understanding the detailed flame structures associated with PFS-assisted lean premixed combustion. First, a two-dimensional direct numerical simulation (DNS) is performed using detailed fuel chemistry, experimental pressure trace, and realistic initial conditions mapped from a prior engine large-eddy simulation (LES), replicating practical lean SI operating conditions. DNS results suggest that conventional triple flame structures are prevalent during the initial stage of flame kernel growth. Both premixed and non-premixed combustion modes are present with the premixed mode contributing dominantly to the total heat release. Detailed analysis reveals the effects of flame stretch and fuel pyrolysis on the flame displacement speed. Based on the DNS findings, the accuracy of a hybrid G-equation/well-stirred reactor (WSR) combustion model is assessed for PFS-assisted lean operation in the LES context. The G-equation model qualitatively captures the premixed branches of the triple flame, while the WSR model predicts the non-premixed branch of the triple flame. Finally, potential needs for improvements to the hybrid G-equation/WSR modeling approach are discussed.


2021 ◽  
pp. 146808742110313
Author(s):  
Gaurav Guleria ◽  
Dario Lopez-Pintor ◽  
John E Dec ◽  
Dimitris Assanis

Partial fuel stratification (PFS) is a low temperature combustion strategy that can alleviate high heat release rates of traditional low temperature combustion strategies by introducing compositional stratification in the combustion chamber using a split fuel injection strategy. In this study, a three-dimensional computational fluid dynamics (CFD) model with large eddy simulations and reduced detailed chemistry was used to model partial fuel stratification at three different stratified conditions. The double direct injection strategy injects 80% of the total fuel mass at −300 CAD aTDC and the remaining 20% of the fuel mass is injected at three different timings of −160, −50, −35 CAD to create low, medium, and high levels of compositional stratification, respectively. The PFS simulations were validated using experiments performed at Sandia National Laboratories on a single-cylinder research engine that operates on RD5-87, a research-grade E10 gasoline. The objective of this study is to compare the performance of three different reduced chemical kinetic mechanisms, namely SKM1, SKM2, and SKM3, at the three compositional stratification levels and identify the most suitable mechanism to reproduce the experimental data. Zero-dimensional chemical kinetic simulations were also performed to further understand differences in performance of the three reduced chemical kinetic mechanisms to explain variations in CFD derived heat release profiles. The modeling results indicate that SKM3 is the most suitable mechanism for partial fuel stratification modeling of research-grade gasoline. The results also show that the autoignition event progresses from the richer to the leaner compositional regions in the combustion chamber. Notably, the leaner regions that have less mass per unit volume, can contribute disproportionately more toward heat release as there are more cells at leaner equivalence ratio ranges. Overall, this study illuminates the underlying compositional stratification phenomena that control the heat release process in PFS combustion.


2021 ◽  
Author(s):  
Adam Dempsey ◽  
Scott Curran ◽  
Andrew I. Ickes ◽  
William J. Cannella ◽  
Robert M. Wagner

2021 ◽  
Author(s):  
Fabian Habicht ◽  
Fatma Cansu Y\xe3\xbcCel ◽  
Niclas Hanraths ◽  
Neda Djordjevic ◽  
Christian Oliver Paschereit

Sign in / Sign up

Export Citation Format

Share Document