included angle
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 34)

H-INDEX

14
(FIVE YEARS 3)

Author(s):  
Shiru Kong ◽  
Changpu Zhao ◽  
Zhishang Bian ◽  
Yujie Cai

The computational fluid dynamical software AVL-FIRE code was used for investigating the impact of multiply injection strategies and spray included angles on combustion and emissions in a marine diesel engine. The fuel injection parameters of spray included angle and pilot injection timing with pilot-main injection, as well as post injection ratio and post injection duration angle with pilot-main-post injection, were all investigated and optimized. The results indicate that retarding pilot injection timing with pilot-main injection declines high temperature region, resulting in a notable reduction in NOx emissions. Since fuel evaporation and burn are hampered by long spray penetration due to low temperature and pressure with pilot injection, a suitable spray included angle are used to offer more efficient air-fuel mixing process. A wider spray included angle simultaneously reduces soot emission and indicated specific fuel consumption (ISFC). Post injection fuel exerts impact on combustion process by causing a great disturbance to flow field during post combustion. Increasing post injection ratio from 4% to 10% at a small post injection duration angle great emission performance is achieved by simultaneous reduction in NOx and soot emissions while only using a slight consumption of ISFC. To summarize, the defeat of traditional NOx-soot trade-off occurs as both NOx and soot emissions are decreased with optimized multiple injection strategy and spray included angle. Particularly, there are respectively four cases with pilot-main injection and two cases with pilot-main-post injection, that achieve simultaneous reduction in NOx emissions, soot emission, and ISFC, compared to the prototype.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3408
Author(s):  
Haichao Zhang ◽  
Luchen Zhang ◽  
Shiqiang Wu ◽  
Fuming Wang ◽  
Zhenggang Zhan ◽  
...  

Under the condition of a large dip angle between the flood discharging structure axis and the downstream cushion pool centerline, the downstream flow connection for the discharging tunnel group is poor, and the lower air pressure in high-altitude areas increases its influence on the trajectory distance of the nappe, further increasing the difficulty of predicting the flood discharge and energy dissipation layout. Based on the RM hydropower project with the world’s highest earth-rockfill dam, this paper studies the problem of a large included angle flip energy dissipation layout of a tunnel group flood discharge using the method of the overall hydraulic physical model test. The test results show that the conventional flip outlet mode has a long nappe falling point, a serious shortage of effective energy dissipation space, a large dynamic hydraulic pressure impact peak value on the bottom slab and side wall of the plunge pool, a poor flow connection between the outlet of the plunge pool and the downstream river channel, and a low energy dissipation rate. Considering the influence of a low-pressure environment, when the “transverse diffusion and downward incidence” outflow is adopted, the nappe falling point shrinks by 11 m, the energy dissipation form of the plunge pool is greatly improved, the effective energy dissipation space is increased by 159%, the RMS of the maximum fluctuating pressure is reduced by 74%, the outflow is smoothly connected with the downstream river, the energy dissipation rate is increased by 0.8%, and the protection range of flood discharge atomization is significantly reduced. This effectively solves the safety problems of large included angle discharge return channels and the energy dissipation and erosion prevention of super-high rockfill dams.


Author(s):  
Deivanayagam Hariharan ◽  
Mozhgan Rahimi Boldaji ◽  
Ziming Yan ◽  
Brian Gainey ◽  
Benjamin Lawler

Abstract Reactivity Control Compression Ignition (RCCI) is a Low-Temperature Combustion (LTC) technique that have been proposed to meet the current demand for high thermal efficiency and low engine-out emissions. However, its requirement of two separate fuel systems has been one of its major challenges in the last decade. This leads to the single-fuel RCCI concept, where the secondary fuel is generated from the primary fuel through CPOX reformation. After studying three different fuels, diesel was found to be the best candidate for the reformation process, where the reformed gaseous fuel (with lower reactivity) was used as the secondary fuel and the parent diesel fuel (with higher reactivity) was used as the primary fuel. Previously, the effects of the start of injection (SOI) timing of diesel and the energy-based blend ratio were studied in detail. In this study, the effect of piston profile and the injector included angles were experimentally studied using both conventional fuel pairs and reformate RCCI. A validated CFD model was also used for a better understanding of the experimental trends. Comparing a re-entrant bowl piston with a shallow bowl piston, the latter showed better thermal efficiency, regardless of the fuel combination, due to its 10% lower surface area for the heat transfer. Comparing the 150-degree and 60-degree included angle, the latter showed better combustion efficiency, regardless of the fuel combination, due to its earlier combustion phasing (at constant SOI timing) as the fuel spray targets better region of the cylinder.


Author(s):  
Peter Chew

Abstract: The objective of Peter Chew Triangle Diagram is to clearly illustrate the topic solution of triangle and provide a complete design for the knowledge of AI age. Peter Chew's triangle diagram will suggest a better single rule that allows us to solve any problem of topic solution of triangle problems directly, more easily and more accurately. There are two important rules for solving the topic solution of triangle today [1,2], namely the sine rule and the cosine rule. The sine rule is used to find a non-included angle when are given two sides and a non-included angle or the opposite side angle given when are given two angles and one side. The cosine rule normally is used to find the included angle when are given three sides or the third side when are given two sides and the included angle. Generally, we only think that when given two sides and an included angle, the cosine rule is used to find the third side. In fact, when two sides and one non included angle are given, the cosine rule is also more easier for finding the third side. For problem given 2 sides and an included angle, directly find the non included angle. We need to use Peter Chew rule [1] to solve this problem. Peter Chew Rule allows us to find the non included angles directly, easier and more accurately. The application of Peter Chew's triangle diagram in the PCET calculator allows the PCET calculator to directly solve any problem in the topic solution of triangle, which is easier and more accurate. The Peter Chew diagram provides a complete design of the topic solution of triangle, which can help students solve any problems in the topic solution of triangle directly, more easily, and more accurately. Apply Peter Chew diagram to the new calculator (PCET calculator) , allows the PCET calculator to solve any problems in the topic solution of triangle and solve some problem that can not solve by current online calculator such as Math Portal and Symbolab. Which can make PCET calculator effectively help the teaching of mathematics, especially when similar covid-19 problems arise in the future.


Author(s):  
Amit Kumar ◽  
Gargi Das ◽  
Subhabrata Ray ◽  
Jay Mant Jha ◽  
Amit K. Thakur ◽  
...  

Abstract The present study investigates the flow pattern characteristics of air-water co-current down-flow in millichannels. The experiments have been performed in glass tube of diameter 0.0042 and 0.008 m. The fluids are injected through Y entry the included angle between the Y arms being 45°, 90°, 135°, and 180° (T Entry). The investigation reveals that the flow patterns are function of tube-diameter, and angle of fluid entry. Interestingly, stratified flow has been observed for steeper Y entry section at low liquid flow rates.


Author(s):  
Bo-Hyun Kim ◽  
Gabriel Walton ◽  
Mark K. Larson ◽  
Steve Berry

Abstract Changes of failure mechanism with increasing confinement, from extensional to shear-dominated failure, are widely observed in the rupture of intact specimens at the laboratory scale and in rock masses. In an analysis published in 2018, both unconfined and triaxial compressive tests were conducted to investigate the strength characteristics of 84 specimens of a Utah coal, including the spalling limits, the ratio of apparent unconfined compressive strength to unconfined compressive strength (UCS), the damage characteristics, and the post-yield dilatancy. These mechanical characteristics were found to be strongly anisotropic as a function of the orientation of the cleats relative to the loading direction, defined as the included angle. A total of four different included angles were used in the work performed in 2018. The authors found that the degree of anisotropic strength differed according to the included angle. However, the transition from extensional to shear failure at the given confinements was not clearly identified. In this study, a total of 20 specimens were additionally prepared from the same coal sample used in the previous study and then tested under both unconfined and triaxial compressive conditions. Because the authors already knew the most contrasting cases of the included angles from the previous work using the four included angles, they chose only two of the included angles (0° and 30°) for this study. For the triaxial compressive tests, a greater confining stress than the mean UCS was applied to the specimens in an attempt to identify the brittle-ductile transition of the coal. The new results have been compiled with the previous results in order to re-evaluate the confinement-dependency of the coal behavior. Additionally, the different confining stresses are used as analogs for different width-to-height (W/H) conditions of pillar strength. Although the W/H ratios of the specimens were not directly considered during testing, the equivalent W/H ratios of a pillar as a function of the confining stresses were estimated using an existing empirical solution. According to this relationship, the W/H at which in situ pillar behavior would be expected to transition from brittle to ductile is identified.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Jiliang Pan ◽  
Xu Wu ◽  
Qifeng Guo ◽  
Xun Xi ◽  
Meifeng Cai

Conjugate joint is one of the most common joint forms in natural rock mass, which is produced by different tectonic movements. To better understand the preexisting flaws, it is necessary to investigate joint development and its effect on the deformation and strength of the rock. In this study, uniaxial compression tests of granite specimens with different conjugate joints distribution were performed using the GAW-2000 compression-testing machine system. The PCI-2 acoustic emission (AE) testing system was used to monitor the acoustic signal characteristics of the jointed specimens during the entire loading process. At the same time, a 3D digital image correlation (DIC) technique was used to study the evolution of stress field before the peak strength at different loading times. Based on the experimental results, the deformation and strength characteristics, AE parameters, damage evolution processes, and energy accumulation and dissipation properties of the conjugate jointed specimens were analyzed. It is considered that these changes were closely related to the angle between the primary and secondary joints. The results show that the AE counts can be used to characterize the damage and failure of the specimen during uniaxial compression. The local stress field evolution process obtained by the DIC can be used to analyze the crack initiation and propagation in the specimen. As the included angle increases from 0° to 90°, the elastic modulus first decreases and then increases, and the accumulative AE counts of the peak first increase and then decrease, while the peak strength does not change distinctly. The cumulative AE counts of the specimen with an included angle of 45° rise in a ladder-like manner, and the granite retains a certain degree of brittle failure characteristics under the axial loading. The total energy, elastic energy, and dissipation energy of the jointed specimens under uniaxial compression failure were significantly reduced. These findings can be regarded as a reference for future studies on the failure mechanism of granite with conjugate joints.


Sign in / Sign up

Export Citation Format

Share Document