Characterization of ubiquitin C-terminal hydrolase 1 (YUH1) from Saccharomyces cerevisiae expressed in recombinant Escherichia coli

2007 ◽  
Vol 56 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Hyun-Ah Yu ◽  
Sung-Gun Kim ◽  
Eun-Jeong Kim ◽  
Woo-Jong Lee ◽  
Dae-Ok Kim ◽  
...  
1995 ◽  
Vol 306 (2) ◽  
pp. 385-397 ◽  
Author(s):  
T R Hawkes ◽  
P G Thomas ◽  
L S Edwards ◽  
S J Rayner ◽  
K W Wilkinson ◽  
...  

The HIS3+ gene of Saccharomyces cerevisiae was overexpressed in Escherichia coli and the recombinant imidazoleglycerol-phosphate dehydratase (IGPD) purified to homogeneity. Laser-desorption and electrospray m.s. indicated a molecular ion within 2 units of that expected (23833.3) on the basis of the protein sequence, with about half of the polypeptide lacking the N-terminal formylmethionine residue. IGPD initially purified as an apoprotein was catalytically inactive and mainly a trimer of M(r) 70,000. Addition of Mn2+ (but not Mg2+) caused this to assemble to an active (40 units/mg) enzyme (Mn-IGPD) comprising of 24 subunits (M(r) 573,000) and containing 1.35 +/- 0.1 Mn atoms/polypeptide subunit. An enzyme with an identical activity and metal content was also obtained when the fermenter growth medium of recombinant Escherichia coli was supplemented with MnCl2, and IGPD was purified through as Mn-IGPD rather than as the apoenzyme and assembled in vitro. Inhibition by EDTA indicated that the intrinsic Mn2+ was essential for activity. The retention of activity over time after dilution to very low concentrations of enzyme (< 20 nM) indicated that the metal remained in tight association with the protein. A novel continuous assay method was developed to facilitate the kinetic characterization of Mn-IGPD. At pH 7.0, the Km for IGP was 0.10 +/- 0.02 mM and the Ki value for inhibition by 1,2,4-triazole, 0.12 +/- 0.02 mM. In contrast with other reports, thiols had no influence on catalytic activity. The activity of Mn-IGPD varied with enzyme concentration in such a way as to suggest that it dissociates to a less active form at very low concentrations. Significant inhibition by the product, imidazole acetol phosphate, was inferred from the shape of the progress curve. Titration with, the potent competitive inhibitor, 2-hydroxy-3-(1,2,4-triazol-1-yl)propyl phosphonate indicated that Mn-IGPD contained 0.9 +/- 0.1 catalytic sites/protomer. The activity nearly doubled in the presence of high concentrations of Mn2+; the apparent Ks for stimulation was 20 microM. The basis of this effect was obscure, since there was no corresponding increase in the titre of active sites. Neither was there a discernable shift in the values of Km or Ki (above), although exogenous Mn2+ did reduce the optimum pH for kcat, from 7.2 to 6.8. On the basis of a single site/subunit, the maximum rate of catalytic turnover at 30 degrees C was 32 s-1.


1993 ◽  
Vol 212 (2) ◽  
pp. 521-528 ◽  
Author(s):  
Zehra SAYERS ◽  
Patricia BROUILLON ◽  
Constantin E. VORGIAS ◽  
Hans F. NOLTING ◽  
Christoph HERMES ◽  
...  

2019 ◽  
Vol 21 (1) ◽  
pp. 297 ◽  
Author(s):  
Triinu Visnapuu ◽  
Aivar Meldre ◽  
Kristina Põšnograjeva ◽  
Katrin Viigand ◽  
Karin Ernits ◽  
...  

Genome of an early-diverged yeast Blastobotrys (Arxula) adeninivorans (Ba) encodes 88 glycoside hydrolases (GHs) including two α-glucosidases of GH13 family. One of those, the rna_ARAD1D20130g-encoded protein (BaAG2; 581 aa) was overexpressed in Escherichia coli, purified and characterized. We showed that maltose, other maltose-like substrates (maltulose, turanose, maltotriose, melezitose, malto-oligosaccharides of DP 4‒7) and sucrose were hydrolyzed by BaAG2, whereas isomaltose and isomaltose-like substrates (palatinose, α-methylglucoside) were not, confirming that BaAG2 is a maltase. BaAG2 was competitively inhibited by a diabetes drug acarbose (Ki = 0.8 µM) and Tris (Ki = 70.5 µM). BaAG2 was competitively inhibited also by isomaltose-like sugars and a hydrolysis product—glucose. At high maltose concentrations, BaAG2 exhibited transglycosylating ability producing potentially prebiotic di- and trisaccharides. Atypically for yeast maltases, a low but clearly recordable exo-hydrolytic activity on amylose, amylopectin and glycogen was detected. Saccharomyces cerevisiae maltase MAL62, studied for comparison, had only minimal ability to hydrolyze these polymers, and its transglycosylating activity was about three times lower compared to BaAG2. Sequence identity of BaAG2 with other maltases was only moderate being the highest (51%) with the maltase MalT of Aspergillus oryzae.


1986 ◽  
Vol 160 (3) ◽  
pp. 491-497 ◽  
Author(s):  
Paul WINGFIELD ◽  
Mark PAYTON ◽  
Jean TAVERNIER ◽  
Marjory BARNES ◽  
Alan SHAW ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document