scholarly journals E. coli expression of a soluble, active single-chain antibody variable fragment containing a nuclear localization signal

2009 ◽  
Vol 66 (2) ◽  
pp. 172-180 ◽  
Author(s):  
Hairong Xiong ◽  
Shuyi Li ◽  
Zhanqiu Yang ◽  
Richard R. Burgess ◽  
William S. Dynan
Author(s):  
Anastasia D. Titova ◽  
Kirill V. Kudzin ◽  
Vladimir A. Prokulevich

To improve expression of the porcine circovirus type 2 (PCV2) capsid protein in E. coli cells, the corresponding gene was optimized and two variants of the open reading frame were constructed, which encoded the full-sized and shortened capsid proteins as part of the expression vector. Rare codons were replaced, and in the case of a shortened version of the gene, the region corresponding to the N-terminal domain of the protein was deleted. A comparison was made of the expression level of the studied proteins. It was established that the highest level of expression in bacterial cells is achieved by simultaneously optimizing the codons and removing the initial (N-terminal) 108 base pair (bp) portion of the gene, which contains the nuclear localization signal.


PLoS ONE ◽  
2013 ◽  
Vol 8 (11) ◽  
pp. e81387 ◽  
Author(s):  
Rebecca A. Boisvert ◽  
Meghan A. Rego ◽  
Paul A. Azzinaro ◽  
Maurizio Mauro ◽  
Niall G. Howlett

1998 ◽  
Vol 140 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Michael J. Matunis ◽  
Jian Wu ◽  
Günter Blobel

RanGAP1 is the GTPase-activating protein for Ran, a small ras-like GTPase involved in regulating nucleocytoplasmic transport. In vertebrates, RanGAP1 is present in two forms: one that is cytoplasmic, and another that is concentrated at the cytoplasmic fibers of nuclear pore complexes (NPCs). The NPC-associated form of RanGAP1 is covalently modified by the small ubiquitin-like protein, SUMO-1, and we have recently proposed that SUMO-1 modification functions to target RanGAP1 to the NPC. Here, we identify the domain of RanGAP1 that specifies SUMO-1 modification and demonstrate that mutations in this domain that inhibit modification also inhibit targeting to the NPC. Targeting of a heterologous protein to the NPC depended on determinants specifying SUMO-1 modification and also on additional determinants in the COOH-terminal domain of RanGAP1. SUMO-1 modification and these additional determinants were found to specify interaction between the COOH-terminal domain of RanGAP1 and a region of the nucleoporin, Nup358, between Ran-binding domains three and four. Together, these findings indicate that SUMO-1 modification targets RanGAP1 to the NPC by exposing, or creating, a Nup358 binding site in the COOH-terminal domain of RanGAP1. Surprisingly, the COOH-terminal domain of RanGAP1 was also found to harbor a nuclear localization signal. This nuclear localization signal, and the presence of nine leucine-rich nuclear export signal motifs, suggests that RanGAP1 may shuttle between the nucleus and the cytoplasm.


Oncogene ◽  
1999 ◽  
Vol 18 (4) ◽  
pp. 955-965 ◽  
Author(s):  
Roger JA Grand ◽  
Julian Parkhill ◽  
Tadge Szestak ◽  
Susan M Rookes ◽  
Sally Roberts ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document