Drift flux modeling of transient high-viscosity-liquid and gas two-phase flow in horizontal pipes

2018 ◽  
Vol 171 ◽  
pp. 605-617 ◽  
Author(s):  
Raymond A. Eghorieta ◽  
Tolani A. Afolabi ◽  
Ekarit Panacharoensawad
2020 ◽  
Vol 8 (12) ◽  
pp. 1000
Author(s):  
Lizeth Torres ◽  
José Noguera ◽  
José Enrique Guzmán-Vázquez ◽  
Jonathan Hernández ◽  
Marco Sanjuan ◽  
...  

We study a high-viscosity two-phase flow through an analysis of the corresponding pressure signals. In particular, we investigate the flow of a glycerin–air mixture moving through a horizontal pipeline with a U-section installed midway along the pipe. Different combinations of liquid and air mass flow rates are experimentally tested. Then, we examine the moments of the statistical distributions obtained from the resulting pressure time series, in order to highlight the significant dynamical traits of the flow. Finally, we propose a novel correlation with two dimensionless parameters: the Euler number and a mass-flow-rate ratio to predict the pressure gradient in high-viscosity two-phase flow. Distinctive variations of the pressure gradients are observed in each section of the pipeline, which suggest that the local flow dynamics must not be disregarded in favor of global considerations.


2013 ◽  
Vol 95 ◽  
pp. 343-352 ◽  
Author(s):  
Y. Zhao ◽  
H. Yeung ◽  
E.E. Zorgani ◽  
A.E. Archibong ◽  
L. Lao

Author(s):  
Samet Ekinci ◽  
T. B. Aydin ◽  
C. Sarica ◽  
E. Pereyra ◽  
T. Kim

An experimental study of the inclination angle (±2° from horizontal) effects on high viscosity oil and gas two-phase flow has been conducted, and the available multiphase flow models/correlations have been evaluated using the acquired data. The effect of pipe inclination on the slug flow characteristics of highly viscous oil-gas two-phase flow was studied based on 1,040 data points covering a wide range of experimental conditions and liquid viscosities in a 50.8-mm-ID pipe at 2° downward and upward inclinations from horizontal. The oil viscosity ranged from 155 cP to 587 cP. Superficial liquid and gas velocities varied from 0.1 m/s to 0.8 m/s and from 0.1 m/s to 5 m/s, respectively. The basic two-phase flow parameters and slug flow characteristics have been analyzed and compared with the past studies conducted for near horizontal pipes.


Author(s):  
Takashi Hibiki

The article “One-dimensional drift-flux correlations for two-phase flow in medium-size channels” written by Takashi Hibiki, was originally published electronically on the publisher’s internet portal (currently SpringerLink) on 17 April 2019 without open access. After publication in Volume 1, Issue 2, page 85–100, the author(s) decided to opt for Open Choice and to make the article an open access publication. Therefore, the copyright of the article has been changed to © The Author(s) 2020 and the article is forthwith distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, duplication, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.


Sign in / Sign up

Export Citation Format

Share Document