A new method to improve long-term fracture conductivity in acid fracturing under high closure stress

2018 ◽  
Vol 171 ◽  
pp. 760-770 ◽  
Author(s):  
Lufeng Zhang ◽  
Fujian Zhou ◽  
Jianye Mou ◽  
Guoqing Xu ◽  
Shicheng Zhang ◽  
...  
2014 ◽  
Vol 1042 ◽  
pp. 44-51
Author(s):  
Jia Nye Mou ◽  
Mao Tang Yao ◽  
Ke Xiang Zheng

Acid fracture conductivity is a key parameter in acid fracturing designs and production performance prediction. It depends on the fracture surface etching pattern, rock mechanical properties, and closure stress. The fracture surfaces undergo creep deformation under closure stress during production. Preservation of fracture conductivity becomes a challenge at elevated closure stress. In this paper, we investigated acid fracture conductivity behavior of Tahe deep carbonate reservoir with high closure stress and high temperature. A series of acid fracture conductivity experiment was conducted in a laboratory facility designed to perform acid fracture conductivity. Gelled acid and cross linked acid with different acid-rock contact times were tested for analyzing the effect of acid type and acid-rock contact time on the resulting conductivity. Closure stress up to 100MPa was tested to verify the feasibility of acid fracturing for elevated closure stress. Long-term conductivity up to 7-day was tested to determine the capability of conductivity retaining after creep deformation. Composite conductivity of acid fracture with prop pant was also carried out. The study shows that the fracture retained enough conductivity even under effective closure stress of 70MPa. The gelled acid has a much higher conductivity than the cross linked acid for the same contact time. For the gelled acid, contact time above 60-minute does not lead to conductivity increase. Acid fracture with prop pant has a lower conductivity at low closure stress and a higher conductivity at high closure stress than the acid fracture, which shows composite conductivity is a feasible way to raise conductivity at high closure stress. The long-term conductivity tests show that the acid fracture conductivity decreases fast within the first 48-hour and then levels off. The conductivity keeps stable after 120-hour. An acid fracture conductivity correlation was also developed for this reservoir.


2015 ◽  
Author(s):  
Weiwei Wu ◽  
Mukul M. Sharma

Abstract Many microfractures created during hydraulic fracturing are too small to be filled with proppants and are likely closed during production. However, for some shales that are rich in calcite (calcareous mudstones), such as the Bakken and Eagle Ford shale, dilute acids can be used while fracturing to maintain the conductivity of these microfractures under closure stress by non-uniformly etching the fracture surfaces. The mineralogy and pore structure of the shale and their evolution during acid fracturing are critical factors on the surface surface etching profile and the fluid leakoff. Therefore, understanding how acid dissolution changes the microstructure, petrophysical properties and pore structures of shale is essential in the design and application of acid fracturing in shales. In this paper changes in shale properties and pore structure by acid fracturing were demonstrated and visually observed for the first time with a scanning electron microscope. Acidized sections of a shale core sample were carefully isolated, and its microstructure, pore structure and petrophysical properties were systematically studied and compared with non-acidized sections of the core. Microstructure changes were found to be strongly dependent on mineral distribution, and several patterns were identified: channels developed in carbonate-rich regions; cavities or grooves formed in carbonate-rich islands or carbonate rings; and surface roughness was created in mixed zones of scattered carbonate and inert minerals. Inert minerals such as clay, organic matter stay relatively undisturbed in the structure, while some mineral grains can be dislodged from their original locations by dissolution of the surrounding carbonates. Many macropores with size up to 120 µm were created and mesopores mostly associated with clay gained more accessibility. Significantly increased permeability and porosity was measured in an acidized shale matrix. Brinell hardness measurements show that, as expected, the hardness of the shale was reduced by acidizing. This means that for acidizing to work effectively, it is important to not etch the fracture surfaces uniformly. Doing so will result in a reduction in the fracture conductivity under stress. The microstructure changes introduced by acid fracturing demonstrated in this study will result in the formation of surface asperities which is likely to improve the fracture conductivity of induced unpropped fractures. The acidized shale matrix close to the fracture surface with increased abundance of macropores and accessibility to mesopores may serve as a preferred pathway for fluid flow as well.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Okamura ◽  
Yutaka Osada ◽  
Shota Nishijima ◽  
Shinto Eguchi

AbstractNonlinear phenomena are universal in ecology. However, their inference and prediction are generally difficult because of autocorrelation and outliers. A traditional least squares method for parameter estimation is capable of improving short-term prediction by estimating autocorrelation, whereas it has weakness to outliers and consequently worse long-term prediction. In contrast, a traditional robust regression approach, such as the least absolute deviations method, alleviates the influence of outliers and has potentially better long-term prediction, whereas it makes accurately estimating autocorrelation difficult and possibly leads to worse short-term prediction. We propose a new robust regression approach that estimates autocorrelation accurately and reduces the influence of outliers. We then compare the new method with the conventional least squares and least absolute deviations methods by using simulated data and real ecological data. Simulations and analysis of real data demonstrate that the new method generally has better long-term and short-term prediction ability for nonlinear estimation problems using spawner–recruitment data. The new method provides nearly unbiased autocorrelation even for highly contaminated simulated data with extreme outliers, whereas other methods fail to estimate autocorrelation accurately.


Indoor Air ◽  
2021 ◽  
Author(s):  
Shide Salimi ◽  
Esteban Estrella Guillén ◽  
Holly Samuelson

2021 ◽  
Author(s):  
Rencheng Dong ◽  
Mary F. Wheeler ◽  
Hang Su ◽  
Kang Ma

Abstract Acid fracturing technique is widely applied to stimulate the productivity of carbonate reservoirs. The acid-fracture conductivity is created by non-uniform acid etching on fracture surfaces. Heterogeneous mineral distribution of carbonate reservoirs can lead to non-uniform acid etching during acid fracturing treatments. In addition, the non-uniform acid etching can be enhanced by the viscous fingering mechanism. For low-perm carbonate reservoirs, by multi-stage alternating injection of a low-viscosity acid and a high-viscosity polymer pad fluid during acid fracturing, the acid tends to form viscous fingers and etch fracture surfaces non-uniformly. To accurately predict the acid-fracture conductivity, this paper developed a 3D acid fracturing model to compute the rough acid fracture geometry induced by multi-stage alternating injection of pad and acid fluids. Based on the developed numerical simulator, we investigated the effects of viscous fingering, perforation design and stage period on the acid etching process. Compared with single-stage acid injection, multi-stage alternating injection of pad and acid fluids leads to narrower and longer acid-etched channels.


Sign in / Sign up

Export Citation Format

Share Document