scholarly journals A new method for acquiring long-term high-precision spatial data on rural settlements

MethodsX ◽  
2021 ◽  
Vol 8 ◽  
pp. 101249
Author(s):  
Wei Song ◽  
Huanhuan Li
Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 334
Author(s):  
Juraj Lieskovský ◽  
Dana Lieskovská

This study compares different nationwide multi-temporal spatial data sources and analyzes the cropland area, cropland abandonment rates and transformation of cropland to other land cover/land use categories in Slovakia. Four multi-temporal land cover/land use data sources were used: The Historic Land Dynamics Assessment (HILDA), the Carpathian Historical Land Use Dataset (CHLUD), CORINE Land Cover (CLC) data and Landsat images classification. We hypothesized that because of the different spatial, temporal and thematic resolution of the datasets, there would be differences in the resulting cropland abandonment rates. We validated the datasets, compared the differences, interpreted the results and combined the information from the different datasets to form an overall picture of long-term cropland abandonment in Slovakia. The cropland area increased until the Second World War, but then decreased after transition to the communist regime and sharply declined following the 1989 transition to an open market economy. A total of 49% of cropland area has been transformed to grassland, 34% to forest and 15% to urban areas. The Historical Carpathian dataset is the more reliable long-term dataset, and it records 19.65 km2/year average cropland abandonment for 1836–1937, 154.44 km2/year for 1938–1955 and 140.21 km2/year for 1956–2012. In comparison, the Landsat, as a recent data source, records 142.02 km2/year abandonment for 1985–2000 and 89.42 km2/year for 2000–2010. These rates, however, would be higher if the dataset contained urbanisation data and more precise information on afforestation. The CORINE Land Cover reflects changes larger than 5 ha, and therefore the reported cropland abandonment rates are lower.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hiroshi Okamura ◽  
Yutaka Osada ◽  
Shota Nishijima ◽  
Shinto Eguchi

AbstractNonlinear phenomena are universal in ecology. However, their inference and prediction are generally difficult because of autocorrelation and outliers. A traditional least squares method for parameter estimation is capable of improving short-term prediction by estimating autocorrelation, whereas it has weakness to outliers and consequently worse long-term prediction. In contrast, a traditional robust regression approach, such as the least absolute deviations method, alleviates the influence of outliers and has potentially better long-term prediction, whereas it makes accurately estimating autocorrelation difficult and possibly leads to worse short-term prediction. We propose a new robust regression approach that estimates autocorrelation accurately and reduces the influence of outliers. We then compare the new method with the conventional least squares and least absolute deviations methods by using simulated data and real ecological data. Simulations and analysis of real data demonstrate that the new method generally has better long-term and short-term prediction ability for nonlinear estimation problems using spawner–recruitment data. The new method provides nearly unbiased autocorrelation even for highly contaminated simulated data with extreme outliers, whereas other methods fail to estimate autocorrelation accurately.


2013 ◽  
Vol 652-654 ◽  
pp. 2153-2158
Author(s):  
Wu Ji Jiang ◽  
Jing Wei

Controlling the tooth errors induced by the variation of diameter of grinding wheel is the key problem in the process of ZC1 worm grinding. In this paper, the influence of tooth errors by d1, m and z1 as the grinding wheel diameter changes are analyzed based on the mathematical model of the grinding process. A new mathematical model and truing principle for the grinding wheel of ZC1 worm is presented. The shape grinding wheel truing of ZC1 worm is carried out according to the model. The validity and feasibility of the mathematical model is proved by case studies. The mathematical model presented in this paper provides a new method for reducing the tooth errors of ZC1 worm and it can meet the high-performance and high-precision requirements of ZC1 worm grinding.


2021 ◽  
Author(s):  
Dongjin Xie ◽  
Qiuyi Luo ◽  
Shen Zhou ◽  
Mei Zu ◽  
Haifeng Cheng

Inkjet printing of functional material has shown a wide range of application in advertzing, OLED display, printed electronics and other specialized utilities that require high-precision, mask-free, direct-writing deposition technique. Nevertheless,...


Indoor Air ◽  
2021 ◽  
Author(s):  
Shide Salimi ◽  
Esteban Estrella Guillén ◽  
Holly Samuelson

2017 ◽  
Vol 32 (7) ◽  
pp. 1388-1399 ◽  
Author(s):  
Elsa Yobregat ◽  
Caroline Fitoussi ◽  
Bernard Bourdon

A new protocol using Eichron™ Sr-resin for high-resolution Sr and Ba isotope measurements using thermal ionization mass spectrometry for cosmochemical samples.


Sign in / Sign up

Export Citation Format

Share Document