Dynamic wavy distribution of cuttings bed in extended reach drilling

2021 ◽  
Vol 198 ◽  
pp. 108171
Author(s):  
Na Zhu ◽  
Wenjun Huang ◽  
Deli Gao
2021 ◽  
Vol 11 (6) ◽  
pp. 2743-2761
Author(s):  
Caetano P. S. Andrade ◽  
J. Luis Saavedra ◽  
Andrzej Tunkiel ◽  
Dan Sui

AbstractDirectional drilling is a common and essential procedure of major extended reach drilling operations. With the development of directional drilling technologies, the percentage of recoverable oil production has increased. However, its challenges, like real-time bit steering, directional drilling tools selection and control, are main barriers leading to low drilling efficiency and high nonproductive time. The fact inspires this study. Our work aims to contribute to the better understanding of directional drilling, more specifically regarding rotary steerable system (RSS) technology. For instance, finding the solutions of the technological challenges involved in RSSs, such as bit steering control, bit position calculation and bit speed estimation, is the main considerations of our study. Classical definitions from fundamental physics including Newton’s third law, beam bending analysis, bit force analysis, rate of penetration (ROP) modeling are employed to estimate bit position and then conduct RSS control to steer the bit accordingly. The results are illustrated in case study with the consideration of the 2D and 3D wellbore scenarios.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1644
Author(s):  
Camilo Pedrosa ◽  
Arild Saasen ◽  
Bjørnar Lund ◽  
Jan David Ytrehus

The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.


2021 ◽  
Vol 73 (05) ◽  
pp. 58-58
Author(s):  
Chris Carpenter

In selecting papers for this feature, reviewer Stéphane Menand of Helmerich and Payne has identified a trio of papers that investigates new approaches toward familiar issues encountered when drilling complex well types. Whether considering the customization of drilling approaches in Middle Eastern carbonate reservoirs, implementing a collaborative work flow in tackling high-tortuosity wells offshore Western Australia, or researching the ability of a fibrous material to effect hole cleaning as opposed to polymeric sweeps, the authors of these papers understand that technical expertise may not be completely realized if it is not applied to problems in original ways. In carbonate reservoirs, the goal of drilling extended-reach wells is set against the geological makeup of such formations, the complexity of which adds significant uncertainty to geosteering and well placement. The authors of paper SPE 203335 develop a work flow that makes possible the customization of drilling scenarios through an emphasis on mechanical specific energy, as well as the use of an optimized borehole-assembly design. The work flow helped deliver what the authors write is the longest well in the Middle East offshore Abu Dhabi. In a similar vein, the authors of paper SPE 202251 describe a challenging scenario involving an ultraextended-reach well in a mature field offshore Western Australia. The project overcame shallow water depth and a high tortuosity requirement by implementing an integrated plan that used a reservoir-mapping-while-drilling service. The authors stress that this technology, coupled with active collaboration between specialists, town, and rig site, allowed the project to achieve the desired oil-column thickness with zero collision incidents. Highly deviated wells often face problems resulting from ineffective hole cleaning. Paper SPE 203147 studies the properties of a fibrous material when compared with the hole-cleaning performance of common polymeric pills. The authors write that the fibrous material proved effective, in part because of a unique characteristic in which a spiderweb-like network of fibers is created that does not allow cuttings to settle easily in complex wells. In addition, the material is environmentally friendly. All three papers approach well- established problems in the critical industry sector of extended-reach drilling with innovation and confidence. Enjoy the papers and be sure to search SPE’s OnePetro online library for more fresh approaches to the technical challenges posed by these well types. Recommended additional reading at OnePetro: www.onepetro.org. SPE 196410 - Analysis of Friction-Reduction System During Drilling Operation at a High-Inclination Well on Field X by Rizqiana Mudhoffar, Tanri Abeng University, et al. SPE 197257 - Successful Management of Collision Risk in an Extended-Reach Well by Manchukarn Naknaka, Mubadala Petroleum, et al. SPE 202730 - Challenges in Drilling and Completion of Extended-Reach-Drilling Wells With Landing Point Departure of More Than 10,000 ft in Light/Slim Casing Design by Nitheesh Kumar Unnikrishnan, Abu Dhabi National Oil Company, et al.


2021 ◽  
Author(s):  
Mehrdad Gharib Shirangi ◽  
Roger Aragall ◽  
Reza Ettehadi ◽  
Roland May ◽  
Edward Furlong ◽  
...  

Abstract In this work, we present our advances to develop and apply digital twins for drilling fluids and associated wellbore phenomena during drilling operations. A drilling fluid digital twin is a series of interconnected models that incorporate the learning from the past historical data in a wide range of operational settings to determine the fluids properties in realtime operations. From several drilling fluid functionalities and operational parameters, we describe advancements to improve hole cleaning predictions and high-pressure high-temperature (HPHT) rheological properties monitoring. In the hole cleaning application, we consider the Clark and Bickham (1994) approach which requires the prediction of the local fluid velocity above the cuttings bed as a function of operating conditions. We develop accurate computational fluid dynamics (CFD) models to capture the effects of rotation, eccentricity and bed height on local fluid velocities above cuttings bed. We then run 55,000 CFD simulations for a wide range of operational settings to generate training data for machine learning. For rheology monitoring, thousands of lab experiment records are collected as training data for machine learning. In this case, the HPHT rheological properties are determined based on rheological measurement in the American Petroleum Institute (API) condition together with the fluid type and composition data. We compare the results of application of several machine learning algorithms to represent CFD simulations (for hole cleaning application) and lab experiments (for monitoring HPHT rheological properties). Rotating cross-validation method is applied to ensure accurate and robust results. In both cases, models from the Gradient Boosting and the Artificial Neural Network algorithms provided the highest accuracy (about 0.95 in terms of R-squared) for test datasets. With developments presented in this paper, the hole cleaning calculations can be performed more accurately in real-time, and the HPHT rheological properties of drilling fluids can be estimated at the rigsite before performing the lab experiments. These contributions advance digital transformation of drilling operations.


Sign in / Sign up

Export Citation Format

Share Document