Compositional Modeling with Formation Damage to Investigate the Effects of CO2-CH4 Water Alternating Gas (WAG) on Performance of Coupled Enhanced Oil Recovery and Geological Carbon Storage

Author(s):  
Jinhyung Cho ◽  
Baehyun Min ◽  
Seoyoon Kwon ◽  
Gayoung Park ◽  
Kun Sang Lee
Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3663
Author(s):  
Lindsey Rasmussen ◽  
Tianguang Fan ◽  
Alex Rinehart ◽  
Andrew Luhmann ◽  
William Ampomah ◽  
...  

The efficiency of carbon utilization and storage within the Pennsylvanian Morrow B sandstone, Farnsworth Unit, Texas, is dependent on three-phase oil, brine, and CO2 flow behavior, as well as spatial distributions of reservoir properties and wettability. We show that end member two-phase flow properties, with binary pairs of oil–brine and oil–CO2, are directly dependent on heterogeneity derived from diagenetic processes, and evolve progressively with exposure to CO2 and changing wettability. Morrow B sandstone lithofacies exhibit a range of diagenetic processes, which produce variations in pore types and structures, quantified at the core plug scale using X-ray micro computed tomography imaging and optical petrography. Permeability and porosity relationships in the reservoir permit the classification of sedimentologic and diagenetic heterogeneity into five distinct hydraulic flow units, with characteristic pore types including: macroporosity with little to no clay filling intergranular pores; microporous authigenic clay-dominated regions in which intergranular porosity is filled with clay; and carbonate–cement dominated regions with little intergranular porosity. Steady-state oil–brine and oil–CO2 co-injection experiments using reservoir-extracted oil and brine show that differences in relative permeability persist between flow unit core plugs with near-constant porosity, attributable to contrasts in and the spatial arrangement of diagenetic pore types. Core plugs “aged” by exposure to reservoir oil over time exhibit wettability closer to suspected in situ reservoir conditions, compared to “cleaned” core plugs. Together with contact angle measurements, these results suggest that reservoir wettability is transient and modified quickly by oil recovery and carbon storage operations. Reservoir simulation results for enhanced oil recovery, using a five-spot pattern and water-alternating-with-gas injection history at Farnsworth, compare models for cumulative oil and water production using both a single relative permeability determined from history matching, and flow unit-dependent relative permeability determined from experiments herein. Both match cumulative oil production of the field to a satisfactory degree but underestimate historical cumulative water production. Differences in modeled versus observed water production are interpreted in terms of evolving wettability, which we argue is due to the increasing presence of fast paths (flow pathways with connected higher permeability) as the reservoir becomes increasingly water-wet. The control of such fast-paths is thus critical for efficient carbon storage and sweep efficiency for CO2-enhanced oil recovery in heterogeneous reservoirs.


2016 ◽  
Vol 830 ◽  
pp. 125-133 ◽  
Author(s):  
Luiz Carlos do Carmo Marques ◽  
Daniel Monteiro Pimentel

The intent of this paper is to offer a comprehensive understanding of the pitfalls associated with CO2-rich gas injection during enhanced oil recovery (EOR) operations. An emphasis is placed, however, on the interactions between this gas and crude oil asphaltenes, because these later compounds are heavy organic molecules which can destabilize, flocculate and precipitate in CO2-rich environments, thus triggering a major field problem: injectivity loss due to near-wellbore (inflow) formation damage: an Achilles heel for any EOR process.


2021 ◽  
Vol 11 (3) ◽  
pp. 1461-1474
Author(s):  
O. A. Olabode ◽  
V. O. Ogbebor ◽  
E. O. Onyeka ◽  
B. C. Felix

AbstractOil rim reservoirs are characterised with a small thickness relative to their overlying gas caps and underlying aquifers and the development these reservoirs are planned very carefully in order to avoid gas and water coning and maximise oil production. Studies have shown low oil recoveries from water and gas injection, and while foam and water alternating gas injections resulted in positive recoveries, it is viewed that an option of an application of chemical enhanced oil recovery option would be preferable. This paper focuses on the application of chemical enhanced oil recovery to improve production from an oil rim reservoir in Niger Delta. Using Eclipse black oil simulator, the effects of surfactant concentration and injection time and surfactant alternating gas are studied on overall oil recovery. Surfactant injections at start and middle of production resulted in a 3.7 MMstb and 3.6 MMstb at surfactant concentration of 1% vol, respectively. This amounted to a 6.6% and 6.5% increment over the base case of no injection. A case study of surfactant alternating gas at the middle of production gave an oil recovery estimate of 10.7%.


Fuel ◽  
2017 ◽  
Vol 190 ◽  
pp. 253-259 ◽  
Author(s):  
Youguo Yan ◽  
Chuanyong Li ◽  
Zihan Dong ◽  
Timing Fang ◽  
Baojiang Sun ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4739
Author(s):  
Riyaz Kharrat ◽  
Mehdi Zallaghi ◽  
Holger Ott

The enhanced oil recovery mechanisms in fractured reservoirs are complex and not fully understood. It is technically challenging to quantify the related driving forces and their interaction in the matrix and fractures medium. Gravity and capillary forces play a leading role in the recovery process of fractured reservoirs. This study aims to quantify the performance of EOR methods in fractured reservoirs using dimensionless numbers. A systematic approach consisting of the design of experiments, simulations, and proxy-based optimization was used in this work. The effect of driving forces on oil recovery for water injection and several EOR processes such as gas injection, foam injection, water-alternating gas (WAG) injection, and foam-assisted water-alternating gas (FAWAG) injection was analyzed using dimensionless numbers and a surface response model. The results show that equilibrium between gravitational and viscous forces in fracture and capillary and gravity forces in matrix blocks determines oil recovery performance during EOR in fractured reservoirs. When capillary forces are dominant in gas injection, fluid exchange between fracture and matrix is low; consequently, the oil recovery is low. In foam-assisted water-alternating gas injection, gravity and capillary forces are in equilibrium conditions as several mechanisms are involved. The capillary forces dominate the water cycle, while gravitational forces govern the gas cycle due to the foam enhancement properties, which results in the highest oil recovery factor. Based on the performed sensitivity analysis of matrix–fracture interaction on the performance of the EOR processes, the foam and FAWAG injection methods were found to be more sensitive to permeability contrast, density, and matrix block highs than WAG injection.


Sign in / Sign up

Export Citation Format

Share Document