Feature-based ensemble history matching in a fractured carbonate reservoir using time-lapse deep electromagnetic tomography

Author(s):  
Yanhui Zhang ◽  
Ibrahim Hoteit ◽  
Klemens Katterbauer ◽  
Marko Maucec ◽  
Alberto F. Marsala
2010 ◽  
Vol 13 (03) ◽  
pp. 509-522 ◽  
Author(s):  
Lang Zhan ◽  
Fikri Kuchuk ◽  
Ali M. Al-Shahri ◽  
S. Mark Ma ◽  
T.S.. S. Ramakrishnan ◽  
...  

Summary This paper presents a novel technique to characterize detailed formation heterogeneity for a carbonate reservoir using measurements from electrode resistivity array (ERA), a wireline formation tester, and a permanent downhole pressure sensor. The ERA was installed on tubing in a barefoot well rather than permanently cemented outside the casing as in previous applications. This notable difference provided flexibility for device installation and operation but also introduced particular issues in the ERA data acquisition and interpretation. Furthermore, the ERA measurements were carried out in conjunction with low-salinity water injection and oil and water production in the same well. The primary finding presented in this paper is that the time-lapse ERA voltages near a source electrode showed unique characteristics that represented local formation heterogeneity. This localized sensitivity of ERA data allows detailed characterization of the formation heterogeneity within the length of the ERA string in the vertical direction and about 100 ft laterally around the wellbore. The scale size of the investigated formation heterogeneity is comparable to typical grid sizes used in current reservoir simulations. Models were developed to identify stratified permeability heterogeneities from the time-lapse ERA voltages. The stratified heterogeneity estimated from the ERA measurements was compared to and verified by openhole logs and core analyses data. The final heterogeneous reservoir model from the ERA was subsequently applied to a numerical simulation that integrated the dynamic fluid flow, salt transport, and electrode array responses for monitoring water-front movement and estimating multiphase formation properties. The history matching of the time-lapse ERA data confirmed the first pass estimates of the identified heterogeneities.


2021 ◽  
pp. 014459872199465
Author(s):  
Yuhui Zhou ◽  
Sheng Lei ◽  
Xuebiao Du ◽  
Shichang Ju ◽  
Wei Li

Carbonate reservoirs are highly heterogeneous. During waterflooding stage, the channeling phenomenon of displacing fluid in high-permeability layers easily leads to early water breakthrough and high water-cut with low recovery rate. To quantitatively characterize the inter-well connectivity parameters (including conductivity and connected volume), we developed an inter-well connectivity model based on the principle of inter-well connectivity and the geological data and development performance of carbonate reservoirs. Thus, the planar water injection allocation factors and water injection utilization rate of different layers can be obtained. In addition, when the proposed model is integrated with automatic history matching method and production optimization algorithm, the real-time oil and water production can be optimized and predicted. Field application demonstrates that adjusting injection parameters based on the model outputs results in a 1.5% increase in annual oil production, which offers significant guidance for the efficient development of similar oil reservoirs. In this study, the connectivity method was applied to multi-layer real reservoirs for the first time, and the injection and production volume of injection-production wells were repeatedly updated based on multiple iterations of water injection efficiency. The correctness of the method was verified by conceptual calculations and then applied to real reservoirs. So that the oil field can increase production in a short time, and has good application value.


2020 ◽  
Author(s):  
Bilal Amjad ◽  
Oloruntoba Ogunsanwo ◽  
Mustafa Bawazir ◽  
Nabil Batita ◽  
Mohammed Siddiqui

Sign in / Sign up

Export Citation Format

Share Document