Integrating sedimentology and ichnology with rock typing and flow units: Implications for clastic reservoir characterization

Author(s):  
Waqar Ahmad ◽  
Murray K. Gingras
2015 ◽  
Author(s):  
David R. Spain ◽  
German D. Merletti ◽  
William Dawson

Abstract The Middle East region holds substantial resources of unconventional tight gas and shale gas. The efficient extraction of these resources requires significant technology and expertise across numerous disciplines, including reservoir description and geomechanical characterization, hydraulic fracture modelling and design, advanced numerical simulation capabilities, sensor and surveillance technologies, and tightly integrated workflows. The effective application of these integrated subsurface and completion workflows leads to improved capital efficiency and well performance through increased well potential, increased ultimate recovery, and reduced costs. Key elements include dynamic rock typing to highlight potential flow units that will maximize gas deliverability, geomechanical modelling to provide a calibrated stress profile, and an integrated model that demonstrates the importance of understanding both dynamic flow properties and geomechanical response in complex tectonic environments. Dynamic rock typing focuses on using both depositional and petrophysical properties including rock type, porosity, and effective gas permeability at reservoir conditions to divide the reservoir into flow units in the context of their saturation history. The geomechanical profiling generates a tectonics-corrected minimum horizontal stress (SHmin) and the net confining stress (NCS). The rock-log-test calibration requires the evaluation and integration of subsurface fracture tests, including After-Closure Analysis (ACA), Data Fracs and Micro Fracs. All three involve different injection volumes and sampled reservoir volumes. Tight gas petrophysical studies must go “beyond volumetrics”, and should consider not only the static (storage) and dynamic (flow) properties within the context of the petroleum system and evolution of the current day pore geometry and fluid saturation distribution, but also the geomechanical stress regime and its implications for efficient completion optimization. Alternative interpretations test the range of uncertainty and are useful in designing field trials and surveillance strategies to reduce the subsurface uncertainty and to mitigate development risks.


1999 ◽  
Vol 2 (02) ◽  
pp. 149-160 ◽  
Author(s):  
D.K. Davies ◽  
R.K. Vessell ◽  
J.B. Auman

Summary This paper presents a cost effective, quantitative methodology for reservoir characterization that results in improved prediction of permeability, production and injection behavior during primary and enhanced recovery operations. The method is based fundamentally on the identification of rock types (intervals of rock with unique pore geometry). This approach uses image analysis of core material to quantitatively identify various pore geometries. When combined with more traditional petrophysical measurements, such as porosity, permeability and capillary pressure, intervals of rock with various pore geometries (rock types) can be recognized from conventional wireline logs in noncored wells or intervals. This allows for calculation of rock type and improved estimation of permeability and saturation. Based on geological input, the reservoirs can then be divided into flow units (hydrodynamically continuous layers) and grid blocks for simulation. Results are presented of detailed studies in two, distinctly different, complex reservoirs: a low porosity carbonate reservoir and a high porosity sandstone reservoir. When combined with production data, the improved characterization and predictability of performance obtained using this unique technique have provided a means of targeting the highest quality development drilling locations, improving pattern design, rapidly recognizing conformance and formation damage problems, identifying bypassed pay intervals, and improving assessments of present and future value. Introduction This paper presents a technique for improved prediction of permeability and flow unit distribution that can be used in reservoirs of widely differing lithologies and differing porosity characteristics. The technique focuses on the use and integration of pore geometrical data and wireline log data to predict permeability and define hydraulic flow units in complex reservoirs. The two studies presented here include a low porosity, complex carbonate reservoir and a high porosity, heterogeneous sandstone reservoir. These reservoir classes represent end-members in the spectrum of hydrocarbon reservoirs. Additionally, these reservoirs are often difficult to characterize (due to their geological complexity) and frequently contain significant volumes of remaining reserves.1 The two reservoir studies are funded by the U.S. Department of Energy as part of the Class II and Class III Oil Programs for shallow shelf carbonate (SSC) reservoirs and slope/basin clastic (SBC) reservoirs. The technique described in this paper has also been used to characterize a wide range of other carbonate and sandstone reservoirs including tight gas sands (Wilcox, Vicksburg, and Cotton Valley Formations, Texas), moderate porosity sandstones (Middle Magdalena Valley, Colombia and San Jorge Basin, Argentina), and high porosity reservoirs (Offshore Gulf Coast and Middle East). The techniques used for reservoir description in this paper meet three basic requirements that are important in mature, heterogeneous fields.The reservoir descriptions are log-based. Flow units are identified using wireline logs because few wells have cores. Integration of data from analysis of cores is an essential component of the log models.Accurate values of permeability are derived from logs. In complex reservoirs, values of porosity and saturation derived from routine log analysis often do not accurately identify productivity. It is therefore necessary to develop a log model that will allow the prediction of another producibility parameter. In these studies we have derived foot-by-foot values of permeability for cored and non-cored intervals in all wells with suitable wireline logs.Use only the existing databases. No new wells will be drilled to aid reservoir description. Methodology Techniques of reservoir description used in these studies are based on the identification of rock types (intervals of rock with unique petrophysical properties). Rock types are identified on the basis of measured pore geometrical characteristics, principally pore body size (average diameter), pore body shape, aspect ratio (size of pore body: size of pore throat) and coordination number (number of throats per pore). This involves the detailed analysis of small rock samples taken from existing cores (conventional cores and sidewall cores). The rock type information is used to develop the vertical layering profile in cored intervals. Integration of rock type data with wireline log data allows field-wide extrapolation of the reservoir model from cored to non-cored wells. Emphasis is placed on measurement of pore geometrical characteristics using a scanning electron microscope specially equipped for automated image analysis procedures.2–4 A knowledge of pore geometrical characteristics is of fundamental importance to reservoir characterization because the displacement of hydrocarbons is controlled at the pore level; the petrophysical properties of rocks are controlled by the pore geometry.5–8 The specific procedure includes the following steps.Routine measurement of porosity and permeability.Detailed macroscopic core description to identify vertical changes in texture and lithology for all cores.Detailed thin section and scanning electron microscope analyses (secondary electron imaging mode) of 100 to 150 small rock samples taken from the same locations as the plugs used in routine core analysis. In the SBC reservoir, x-ray diffraction analysis is also used. The combination of thin section and x-ray analyses provides direct measurement of the shale volume, clay volume, grain size, sorting and mineral composition for the core samples analyzed.Rock types are identified for each rock sample using measured data on pore body size, pore throat size and pore interconnectivity (coordination number and pore arrangement).


2019 ◽  
Vol 10 (2) ◽  
pp. 467-479
Author(s):  
Mostafa Khalid ◽  
Saad El-Din Desouky ◽  
Mohammed Rashed ◽  
Tarek Shazly ◽  
Kadry Sediek

2020 ◽  
Vol 10 (8) ◽  
pp. 3263-3279 ◽  
Author(s):  
Mohamed Ragab Shalaby ◽  
Syamimi Hana Binti Sapri ◽  
Md Aminul Islam

Abstract An integrated reservoir characterization study is achieved on the Early to Middle Miocene Kaimiro Formation in the Taranaki Basin, New Zealand, to identify the quality of the formation as a potential reservoir. The Kaimiro Formation is a section of the Kapuni Group in the Taranaki Basin, consisting mainly of sandstone and a range of coastal plain through shallow marine facies. Several methods were accomplished for this study: petrophysical evaluation, sedimentological and petrographical descriptions and well log analysis. Based on the petrophysical study, the Kaimiro Formation is interpreted to have several flow units ranges up to 15 μm. Higher RQI and FZI reflect potential reservoir, while the pore size and pore throat diameters (r35) are found to be within the range of macro- and megapores, on the contrary to macropores related to poor reservoir quality concentrated in Tui-1 well. This is in good agreement with other measurements that show the formation is exhibited to be a good promising reservoir as the formation comprises a good average porosity of 19.6% and a good average permeability of 879.45 mD. The sedimentological and petrographical studies display that several diagenetic features have been affecting the formation such as compaction, cementation, dissolution and the presence of authigenic clay minerals. Although these features commonly occur, the impact on the reservoir properties and quality is minor as primary and secondary pores are still observed within the Kaimiro sandstone. Moreover, well log analysis is also completed to further ensure the hydrocarbon potential of the formation through a qualitative and quantitative analysis. It has been confirmed that the Kaimiro Formation is a promising reservoir containing several flow units with higher possibility for storage capacity.


Sign in / Sign up

Export Citation Format

Share Document