Mechanism study of water control and oil recovery improvement by polymer gels based on nuclear magnetic resonance

Author(s):  
Zhihua Deng ◽  
Ming Liu ◽  
Junhui Qin ◽  
Haitong Sun ◽  
Hongjun Zhang ◽  
...  
2021 ◽  
Author(s):  
Yongsheng Tan ◽  
Qi Li ◽  
Liang Xu ◽  
Xiaoyan Zhang ◽  
Tao Yu

<p>The wettability, fingering effect and strong heterogeneity of carbonate reservoirs lead to low oil recovery. However, carbon dioxide (CO<sub>2</sub>) displacement is an effective method to improve oil recovery for carbonate reservoirs. Saturated CO<sub>2</sub> nanofluids combines the advantages of CO<sub>2</sub> and nanofluids, which can change the reservoir wettability and improve the sweep area to achieve the purpose of enhanced oil recovery (EOR), so it is a promising technique in petroleum industry. In this study, comparative experiments of CO<sub>2</sub> flooding and saturated CO<sub>2</sub> nanofluids flooding were carried out in carbonate reservoir cores. The nuclear magnetic resonance (NMR) instrument was used to clarify oil distribution during core flooding processes. For the CO<sub>2</sub> displacement experiment, the results show that viscous fingering and channeling are obvious during CO<sub>2</sub> flooding, the oil is mainly produced from the big pores, and the residual oil is trapped in the small pores. For the saturated CO<sub>2</sub> nanofluids displacement experiment, the results show that saturated CO<sub>2</sub> nanofluids inhibit CO<sub>2</sub> channeling and fingering, the oil is produced from the big pores and small pores, the residual oil is still trapped in the small pores, but the NMR signal intensity of the residual oil is significantly reduced. The final oil recovery of saturated CO<sub>2</sub> nanofluids displacement is higher than that of CO<sub>2</sub> displacement. This study provides a significant reference for EOR in carbonate reservoirs. Meanwhile, it promotes the application of nanofluids in energy exploitation and CO<sub>2</sub> utilization.</p>


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 440-450 ◽  
Author(s):  
Bing Wei ◽  
Ke Gao ◽  
Tao Song ◽  
Xiang Zhang ◽  
Wanfen Pu ◽  
...  

Summary Recent reports have demonstrated that carbon dioxide (CO2) injection can further raise the oil recovery of fractured tight reservoirs after natural depletion, with major projects in progress worldwide. There is, however, a lack of understanding of the mass-exchange process between the matrix and fracture at pore scale. In this study, a matrix (0.8 md)/fracture model was designed to experimentally simulate a CO2-cyclic-injection process at 80°C and 35 MPa (Lucaogou tight formation). The oil (dead-oil) concentration in the matrix and fracture was continuously monitored online using a low-field nuclear-magnetic-resonance (NMR) technique aiming to quantify the oil recovery in situ and clarify the mass-exchange behaviors. The results showed that CO2 cyclic injection was promising in improving the oil recovery of fractured tight reservoirs. Nevertheless, the oil-recovery rates rapidly declined with the cycle of CO2 injection and the incremental oil was primarily produced by large pores with 100 ms > T2 > 3.0 ms. The NMR T2 profiles of the model evidenced the drainage of the matrix oil by CO2 toward the fracture. Because of the light-hydrocarbon extraction, the produced oils became lighter than the original oil. We noted that the main driving forces of the incremental oil recovery were CO2 displacement, CO2/oil interactions (mainly extraction and solubility), and pressure gradient (depressurization). In the first cycle, the CO2/oil interactions driven by CO2 diffusion during soaking enhanced the mass exchange between the matrix and the fracture. However, from the second cycle, CO2/oil interactions and CO2 displacement became insignificant. The results of this study supplement earlier findings and can provide insights into the CO2-enhanced-oil- recovery (EOR) mechanisms in fractured tight reservoirs. NOTE: Supporting information available.


2012 ◽  
Vol 94 (3) ◽  
pp. 683-706 ◽  
Author(s):  
Jonathan Mitchell ◽  
John Staniland ◽  
Romain Chassagne ◽  
Edmund J. Fordham

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanquan Sun ◽  
Haitao Wang ◽  
Zengmin Lun

AbstractCO2 EOR (enhanced oil recovery) will be one of main technologies of enhanced unconventional resources recovery. Understanding effect of permeability and fractures on the oil mobilization of unconventional resources, i.e. tight oil, is crucial during CO2 EOR process. Exposure experiments based on nuclear magnetic resonance (NMR) were used to study the interaction between CO2 and tight oil reservoirs in Chang 8 layer of Ordos Basin at 40 °C and 12 MPa. Effect of permeability and fractures on oil mobilization of exposure experiments were investigated for the different exposure time. The oil was mobilized from matrix to the surface of matrix and the oil recovery increased as the exposure time increased. The final oil recovery increased as the core permeability increased in these exposure experiments. Exposure area increased to 1.75 times by fractures resulting in that oil was mobilized faster in the initial stage of exposure experiment and the final oil recovery increased to 1.19 times from 28.8 to 34.2%. This study shows the quantitative results of effect of permeability and fractures on oil mobilization of unconventional resources during CO2 EOR, which will support CO2 EOR design in Chang 8 layer of Ordos Basin.


2018 ◽  
Vol 32 (4) ◽  
pp. 4959-4968 ◽  
Author(s):  
Bin Liang ◽  
Hanqiao Jiang ◽  
Junjian Li ◽  
Fuzhen Chen ◽  
Wenpei Miao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document