exposure experiment
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 41)

H-INDEX

15
(FIVE YEARS 4)

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 750
Author(s):  
Agnieszka Tkaczyk ◽  
Piotr Jedziniak ◽  
Łukasz Zielonka ◽  
Michał Dąbrowski ◽  
Piotr Ochodzki ◽  
...  

This study applied multi-mycotoxin liquid chromatography with tandem mass spectrometric detection (LC-MS/MS) methods to determine the biomarkers of exposure in urine and serum samples from a dose-response study with pigs. The 24 studied pigs were divided into three groups: a control and two experimental ones (with different levels of feed contamination). They were exposed to feed prepared from cereals contaminated with deoxynivalenol (DON), zearalenone (ZEN), ochratoxin A (OTA) and citrinin (CIT) for 14 days. After that, both experimental groups received the same feed as the control group for the next 14 days to determine the kinetics of the disappearance of mycotoxin biomarkers. Urine samples were collected daily in the morning and blood samples—eight-times during the experiment. The study reported herein was the first prolonged exposure experiment for multiple mycotoxins like OTA and CIT in pigs. The urinary and serum levels of all biomarkers correlated well with the respective toxin intake; thereby demonstrating that they are suitable biomarkers of exposure in pigs. Urine is a good candidate to monitor DON, ZEN, OTA, CIT exposure while serum may be used to monitor DON, OTA and CIT. Additionally, OTA has even been quantified in both matrices in the experimental groups two weeks after changing the contaminated feed back to the control, this result differed from those produced by the other mycotoxins which were only quantified during the first two weeks. Therefore both matrices are suitable candidates to monitor prolonged OTA exposure in pigs.


2021 ◽  
pp. 1-14
Author(s):  
Adrian S. Sabau ◽  
Jason Cook ◽  
Adam M. Aaron ◽  
Joseph B. Tipton ◽  
Arnold Lumsdaine

Author(s):  
Zijiao Zhang ◽  
Kangfu Zhuo ◽  
Wenhan Wei ◽  
Fu Li ◽  
Jie Yin ◽  
...  

Despite recent progress in the research of people’s emotional response to the environment, the built—rather than natural—environment’s emotional effects have not yet been thoroughly examined. In response to this knowledge gap, we recruited 26 participants and scrutinized their emotional response to various urban street scenes through an immersive exposure experiment using virtual reality. We utilized new physiological monitoring technologies that enable synchronized observation of the participants’ electroencephalography, electrodermal activity, and heart rate, as well as their subjective indicators. With the newly introduced measurement for the global visual patterns of the built environment, we built statistical models to examine people’s emotional response to the physical element configuration and color composition of street scenes. We found that more diverse and less fragmented scenes inspired positive emotional feelings. We also found (in)consistency among the physiological and subjective indicators, indicating a potentially interesting neural−physiological interpretation for the classic form−function dichotomy in architecture. Besides the practical implications on promoting physical environment design, this study combined objective physiology-monitoring technology and questionnaire-based research techniques to demonstrate a better approach to quantify environment−emotion relationships.


2021 ◽  
Vol 31 (5) ◽  
pp. 1-4
Author(s):  
Earle E. Burkhardt ◽  
Robert C. Duckworth ◽  
Arnold Lumsdaine ◽  
Michael Kaufman ◽  
Phillip Ferguson ◽  
...  

Author(s):  
Aki Goto ◽  
Kaori Umeda ◽  
Kazuki Yukumatsu ◽  
Yugo Kimoto

AbstractWe expect satellites at altitude below 300 km, very low Earth orbit (VLEO), making observations of the Earth at optical wavelength with increasingly higher resolution. The density of atomic oxygen (AO) at VLEO is significantly higher than that at LEO; severe degradation of spacecraft materials (polymers) due to the high-flux AO is a serious concern. To clarify VLEO environmental effects on spacecraft materials, we designed the Material Degradation Monitor (MDM) and MDM2 missions. The MDM is a material exposure experiment onboard the Super Low-Altitude Test Satellite (SLATS). It aims to understand reactions and degradation of polymeric materials depending on AO fluence in VLEO. In the MDM, samples of spacecraft material were exposed at altitude of 160–560 km; their degradation behaviors were observed optically by a CCD camera for 1.8 years. The MDM2 is a material exposure experiment onboard the International Space Station (ISS) and aims to correctly understand surface reactions and degradation of the same samples used in the MDM at a given AO fluence. In the MDM2, the samples were exposed at altitude of 400 km for 1 year and then returned to Earth for analysis. Based on the results from both missions, we will help in the molecular design of more-durable materials, and establish design standards for future VLEO satellites. This study aims to quantitatively understand the surface reactions and degradation of the 11 types of thermal control materials exposed on the ISS in the MDM2. Five types of multilayer insulation (MLI) films (three types of Si-containing AO protective materials (a silsesquioxane-(SQ-) containing coated polyimide film, two types of polysiloxane-block polyimide (BSF-30) films), an ITO-coated polyimide film, and a Beta Cloth), and flexible optical solar reflectors (flexible OSRs) were found to have a high durability against erosion by AO. This was determined by measuring their loss of mass and thermo-optical properties. The Ag/Inconel layer’s discoloration and peeling were observed for three types of FEP/Ag films as determined by the Ag layer’s oxidation by AO. Also, X-ray photoelectron spectroscopy (XPS) showed that reactions of the Si-containing materials, the SQ-coated polyimide film and the BSF-30 film, form a layer of silica that protects against AO. Even though the concentration of Si in the SQ-coating is the same or greater than in the BSF-30 film, the amount of the SQ-coating that reacted was larger than that of the BSF-30 film under the same AO fluence. Moreover, the effective ability of the UV-shielding coating, composed of ITO and CeO2 coated onto one of the BSF-30 films, was demonstrated by UV–Vis spectrometry. Its sufficient AO protection was confirmed by mass measurements, XPS analyses, and FE-SEM observations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Huanquan Sun ◽  
Haitao Wang ◽  
Zengmin Lun

AbstractCO2 EOR (enhanced oil recovery) will be one of main technologies of enhanced unconventional resources recovery. Understanding effect of permeability and fractures on the oil mobilization of unconventional resources, i.e. tight oil, is crucial during CO2 EOR process. Exposure experiments based on nuclear magnetic resonance (NMR) were used to study the interaction between CO2 and tight oil reservoirs in Chang 8 layer of Ordos Basin at 40 °C and 12 MPa. Effect of permeability and fractures on oil mobilization of exposure experiments were investigated for the different exposure time. The oil was mobilized from matrix to the surface of matrix and the oil recovery increased as the exposure time increased. The final oil recovery increased as the core permeability increased in these exposure experiments. Exposure area increased to 1.75 times by fractures resulting in that oil was mobilized faster in the initial stage of exposure experiment and the final oil recovery increased to 1.19 times from 28.8 to 34.2%. This study shows the quantitative results of effect of permeability and fractures on oil mobilization of unconventional resources during CO2 EOR, which will support CO2 EOR design in Chang 8 layer of Ordos Basin.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3265
Author(s):  
Yuhao Sun ◽  
Xiaolin Chen ◽  
Hong Liu ◽  
Song Liu ◽  
Huahua Yu ◽  
...  

Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus which has caused heavy losses to the poultry breeding industry. Currently, there is no effective medicine to treat this virus. In our previous experiments, the low-molecular-weight Sargassum fusiforme polysaccharide (SFP) was proven to possess antiviral activity against ALV-J, but its function was limited to the virus adsorption stage. In order to improve the antiviral activity of the SFP, in this study, three new SFP long-chain alkyl group nanomicelles (SFP-C12M, SFP-C14M and SFP-C16M) were prepared. The nanomicelles were characterized according to their physical and chemical properties. The nanomicelles were characterized by particle size, zeta potential, polydispersity index, critical micelle concentration and morphology. The results showed the particle sizes of the three nanomicelles were all approximately 200 nm and SFP-C14M and SFP-C16M were more stable than SFP-C12M. The newly prepared nanomicelles exhibited a better anti-ALV-J activity than the SFP, with SFP-C16M exhibiting the best antiviral effects in both the virus adsorption stage and the replication stage. The results of the giant unilamellar vesicle exposure experiment demonstrated that the new virucidal effect of the nanomicelles might be caused by damage to the phospholipid membrane of ALV-J. This study provides a potential idea for ALV-J prevention and development of other antiviral drugs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vincent Billy ◽  
Zuzana Lhotská ◽  
Milan Jirků ◽  
Oldřiška Kadlecová ◽  
Lucia Frgelecová ◽  
...  

Protists are a normal component of mammalian intestinal ecosystems that live alongside, and interact with, bacterial microbiota. Blastocystis, one of the most common intestinal eukaryotes, is reported as a pathogen that causes inflammation and disease, though health consequences likely vary depending on host health, the gut ecosystem, and genetic diversity. Accumulating evidence suggests that Blastocystis is by and large commensal. Blastocystis is more common in healthy individuals than those with immune mediated diseases such as Inflammatory Bowel Diseases (IBD). Blastocystis presence is also associated with altered composition and higher richness of the bacterial gut microbiota. It is not clear whether Blastocystis directly promotes a healthy gut and microbiome or is more likely to colonize and persist in a healthy gut environment. We test this hypothesis by measuring the effect of Blastocystis ST3 colonization on the health and microbiota in a rat experimental model of intestinal inflammation using the haptenizing agent dinitrobenzene sulfonic acid (DNBS). We experimentally colonized rats with Blastocystis ST3 obtained from a healthy, asymptomatic human donor and then induced colitis after 3 weeks (short term exposure experiment) or after 13 weeks (long term exposure experiment) and compared these colonized rats to a colitis-only control group. Across experiments Blastocystis ST3 colonization alters microbiome composition, but not richness, and induces only mild gut inflammation but no clinical symptoms. Our results showed no effect of short-term exposure to Blastocystis ST3 on gut inflammation following colitis induction. In contrast, long-term Blastocystis exposure appears to promote a faster recovery from colitis. There was a significant reduction in inflammatory markers, pathology 2 days after colitis induction in the colonized group, and clinical scores also improved in this group. Blastocystis colonization resulted in a significant reduction in tumor necrosis factor alpha (TNFα) and IL-1β relative gene expression, while expression of IFNγ and IL17re/17C were elevated. We obtained similar results in a previous pilot study. We further found that bacterial richness rebounded in rats colonized by Blastocystis ST3. These results suggest that Blastocystis sp. may alter the gut ecosystem in a protective manner and promote faster recovery from disturbance.


Toxins ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 259
Author(s):  
Petrus Siregar ◽  
Gilbert Audira ◽  
Ling-Yi Feng ◽  
Jia-Hau Lee ◽  
Fiorency Santoso ◽  
...  

Arecoline is one of the nicotinic acid-based alkaloids, which is found in the betel nut. In addition to its function as a muscarinic agonist, arecoline exhibits several adverse effects, such as inducing growth retardation and causing developmental defects in animal embryos, including zebrafish, chicken, and mice. In this study, we aimed to study the potential adverse effects of waterborne arecoline exposure on zebrafish larvae locomotor activity and investigate the possible mechanism of the arecoline effects in zebrafish behavior. The zebrafish behavior analysis, together with molecular docking and the antagonist co-exposure experiment using muscarinic acetylcholine receptor antagonists were conducted. Zebrafish larvae aged 96 h post-fertilization (hpf) were exposed to different concentrations (0.001, 0.01, 0.1, and 1 ppm) of arecoline for 30 min and 24 h, respectively, to find out the effect of arecoline in different time exposures. Locomotor activities were measured and quantified at 120 hpf. The results showed that arecoline caused zebrafish larvae locomotor hyperactivities, even at a very low concentration. For the mechanistic study, we conducted a structure-based molecular docking simulation and antagonist co-exposure experiment to explore the potential interactions between arecoline and eight subtypes, namely, M1a, M2a, M2b, M3a, M3b, M4a, M5a, and M5b, of zebrafish endogenous muscarinic acetylcholine receptors (mAChRs). Arecoline was predicted to show a strong binding affinity to most of the subtypes. We also discovered that the locomotion hyperactivity phenotypes triggered by arecoline could be rescued by co-incubating it with M1 to M4 mAChR antagonists. Taken together, by a pharmacological approach, we demonstrated that arecoline functions as a highly potent hyperactivity-stimulating compound in zebrafish that is mediated by multiple muscarinic acetylcholine receptors.


Polar Biology ◽  
2021 ◽  
Vol 44 (3) ◽  
pp. 483-489
Author(s):  
Bjørn A. Krafft ◽  
Ludvig A. Krag

AbstractThe use of light-emitting diodes (LEDs) is increasingly used in fishing gears and its application is known to trigger negative or positive phototaxis (i.e., swimming away or toward the light source, respectively) for some marine species. However, our understanding of how artificial light influences behavior is poorly understood for many species and most studies can be characterized as trial and error experiments. In this study, we tested whether exposure to white LED light could initiate a phototactic response in Antarctic krill (Euphausia superba). Trawl-caught krill were used in a controlled artificial light exposure experiment conducted onboard a vessel in the Southern Ocean. The experiment was conducted in chambers with dark and light zones in which krill could move freely. Results showed that krill displayed a significant positive phototaxis. Understanding this behavioral response is relevant to development of krill fishing technology to improve scientific sampling gear, improve harvest efficiency, and reduce potential unwanted bycatch.


Sign in / Sign up

Export Citation Format

Share Document