scholarly journals Plate acoustic waves for low frequency delay line delaying signals up to 0.5 ms

2010 ◽  
Vol 3 (1) ◽  
pp. 533-539 ◽  
Author(s):  
B.D. Zaitsev ◽  
I.E. Kuznetsova ◽  
N.E. Zemnyukov ◽  
V.I. Proidakov ◽  
A.A. Teplykh
Author(s):  
Kun-Lin Lee ◽  
Ioana Voiculescu

Abstract Surface acoustic wave (SAW) devices have been applied as telecommunication filter for decades. Due to its simple interdigitated transducer (IDT) layout and geometry-dependent frequency, the SAW filter operates at the designed frequency and its working bandwidth could be designed to fulfill specific applications. Researchers also use SAW devices for sensing the mass or pressure in air. Furthermore, SAW device can be employed in liquid environments. The main focus of this paper is to present a Love mode device for liquid sensing. The Love mode device included a shear-horizontal surface acoustic wave (SH-SAW) delay-line configuration with a photoresist waveguide, which was deposited on split-electrode IDT and reflectors. The substrate was ST-cut quartz, and the SH-SAW propagated between the waveguide and the piezoelectric substrate. Using the Love mode device, we monitored the frequency shift corresponding to a water drop. We demonstrate that the insertion loss level is not critical for S-parameter transmission signal readout. The signal quality within the resonant narrowband is very important for water sensing. In this study, two types of SH-SAW devices were fabricated and tested; SH-SAW resonator and SH-SAW delay-line. We also demonstrate single and split electrodes electrode configurations to generate acoustic waves. Four different waveguide thickness values were tested to prove the benefit of thick polymer waveguide. This research also offers a standard method to fabricate SAW on ST-quartz for liquid application. In the future, we plan to integrate the Love mode device with a cell-culturing chamber to obtain a biosensor.


2003 ◽  
Vol 15 (43) ◽  
pp. 7201-7211 ◽  
Author(s):  
A M Gorb ◽  
A B Nadtochii ◽  
O A Korotchenkov

Geophysics ◽  
1979 ◽  
Vol 44 (12) ◽  
pp. 1922-1940 ◽  
Author(s):  
Salvatore R. Santaniello ◽  
Frederick R. DiNapoli ◽  
Robert K. Dullea ◽  
Peter D. Herstein

Understanding the mechanisms by which the ocean sediment redirects impinging sound back into the ocean is necessary in developing propagation models for sonar performance prediction. The Naval Underwater Systems Center (NUSC) has (1) conducted controlled, self‐calibrating acoustic measurements where the ocean bottom interacted signal is isolated in time for analysis, (2) developed deconvolution processing techniques to aid in describing the impulse response of the ocean sediment, and (3) performed modeling to study the interaction of acoustic waves at the ocean bottom. This paper presents a synopsis of studies showing the necessity of considering the refraction of sound by the ocean sediment when predicting low‐frequency propagation loss. Constructive interference between nonplanar wave sediment refracted sound and sound reflected by the ocean‐sediment interface and subbottom layering can cause negative values of bottom loss when using plane‐wave models to interpret measured data. These models cannot account for all possible acoustic arrivals at a receiver. In addition, for a given frequency and constant ocean bottom grazing angle, bottom loss can be dependent upon both processing bandwidth and source/receiver depth. Deconvolution has aided in time resolution of signals that make up the bottom‐interacted signals. Resolution of these signals aids in interpreting results. A modeling effort utilizing the Fast Field Program (a computer technique for evaluating the field integral by the fast Fourier transform) provides quantitative evidence for the necessity of accounting for the refraction of sound by subocean sediments to interpret properly low‐frequency propagation loss measurements.


2005 ◽  
Vol 15 (10) ◽  
pp. 1459-1468 ◽  
Author(s):  
GEORGE VENKOV

This paper deals with the scattering of time-harmonic acoustic waves by inhomogeneous medium. We study the problem to recover the near and the far field using a priori information about the refractive index and the support of inhomogeneity. The incident spherical wave is modified in such a way as to recover the plane wave incidence when the source point approaches infinity. Applying the low-frequency expansions, the scattering medium problem is reduced to a sequence of potential problems for the approximation coefficients in the presence of a monopole singularity located at the source of incidence. Complete expansions for the integral representation formula in the near field as well as for the scattering amplitude in the far field are provided. The method is applied to the case of a spherical region of inhomogeneity and a radial dependent refractive index. As the point singularity tends to infinity, the relative results recover the scattering medium problem for plane wave incidence.


Author(s):  
Habib Ammari ◽  
Brian Fitzpatrick ◽  
David Gontier ◽  
Hyundae Lee ◽  
Hai Zhang

The purpose of this paper is to investigate acoustic wave scattering by a large number of bubbles in a liquid at frequencies near the Minnaert resonance frequency. This bubbly media has been exploited in practice to obtain super-focusing of acoustic waves. Using layer potential techniques, we derive the scattering function for a single spherical bubble excited by an incident wave in the low frequency regime. We then propose a point scatterer approximation for N bubbles, and describe several numerical simulations based on this approximation, that demonstrate the possibility of achieving super-focusing using bubbly media.


Sign in / Sign up

Export Citation Format

Share Document