horizontal refraction
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 10)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 9 (12) ◽  
pp. 1449
Author(s):  
Jianbo Zhou ◽  
Jun Tang ◽  
Yixin Yang

The performance of warping transformation in diminishing the error in underwater source-bearing estimation, caused by horizontal refraction effects (also named 3D effects), is studied. First, the capability of warping transformation for separating the normal modes, as well as their direct and horizontally refracted paths, in a standard Acoustical Society of America (ASA) wedge is demonstrated. Second, the error values for source bearing estimation in three different manners, i.e., using the full signal, using its component corresponding to the first mode, and using the component of the latter corresponding only to the direct path are compared for the same wedge case. The results show that the estimation error can be significantly reduced by beamforming, with only the first mode, or using the direct path of the first mode in cases where there exists a horizontally refracted path of the first mode.


2021 ◽  
Vol 9 (11) ◽  
pp. 1269
Author(s):  
Andrey Lunkov ◽  
Danila Sidorov ◽  
Valery Petnikov

Three-Dimensional (3-D) sound propagation in a shallow-water waveguide with a constant depth and inhomogeneous bottom is studied through numerical simulations. As a model of inhomogeneity, a transitional region between an acoustically soft and hard bottom is considered. Depth-averaged transmission loss simulations using the “horizontal rays and vertical modes” approach and mode parabolic equations demonstrate the horizontal refraction of sound in this region, even if the water column is considered homogeneous. The observed wave effect is prominent at low frequencies, at which the water depth does not exceed a few acoustic wavelengths. The obtained results within the simplified model are verified by the simulations for a real seabed structure in the Kara Sea.


2021 ◽  
Vol 9 (10) ◽  
pp. 1078
Author(s):  
Shenghao Li ◽  
Zhenglin Li ◽  
Wen Li ◽  
Yanxin Yu

Seamounts have important effects on sound propagation in deep water. A sound propagation experiment was conducted in the South China Sea in 2016. The three-dimensional (3D) effects of a seamount on sound propagation are observed in different propagation tracks. Ray methods (BELLHOP N×2D and 3D models) are used to analyze and explain the phenomena. The results show that 3D effects have obvious impacts on a sound field within a horizontal refraction zone behind the seamount because some sound beams cannot reach the receiver for the horizontal refraction effects, which impacts the sound field within a certain angle range behind the seamount. The arrival structure results show that the eigenrays after horizontal reflection will arrive at the receiver earlier than those obtained from the two-dimensional (2D) model within the horizontal refraction zone behind the seamount. This means that the horizontal reflection effect of a seamount will cause the shortening of sound propagation paths. Finally, in the reflection zone in front of the seamount, the 2D and 3D TL results show that the shape of the reflection zone is similar to an “arch” type, and the horizontal refraction of sound waves has little effect on the TLs in the reflection zone of a seamount.


2021 ◽  
Author(s):  
Kevin Heaney ◽  
Emanuel Coelho ◽  
Peter Nielsen ◽  
Mario Zampolli ◽  
Georgios Haralabus

<p>The ocean is an excellent medium for the propagation of low frequency sound, so much so, that the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) can monitor all the world’s oceans for nuclear tests with a small number of hydroacoustic stations (with multiple underwater hydrophones for triangulation) distributed around remote regions of the earth.  The classification and localization system has been developed based upon 2-dimensional (2D) acoustic models, were the effects of horizontal refraction and diffraction have been ignored.  These effects have been shown to have a large impact on the energy received behind (and reflected from) islands and seamounts.   To demonstrate the maturity of modern 3-dimensional (3D) models, a set of test-cases were developed including: a benchmark (5°) wedge, a shallow water twin conical seamount case, a deep-water long-range island and seamount and the reconstruction of the acoustic propagation from the estimated source location of the hydroacoustic anomaly associated with the loss of the ARA San Juan off the coast of Argentina in 2017 to a receiving IMS hydroacoustic station.  The models compared include two 3D Parabolic equations and the Bellhop3D raytrace algorithms.   Comparisons show quantitative agreement between the models.  The expectation is that this validation will provide a way forward to incorporate various combinations of these models into the CTBTO detection, classification and localization processing algorithm.</p>


2021 ◽  
Vol 227 ◽  
pp. 04003
Author(s):  
Abdusali Suyunov ◽  
Shukhrat Suyunov ◽  
Olim Urokov

The article examines the influence of refraction on the results of measuring the horizontal angle in special places. In the conditions of the hot and arid climate of Uzbekistan in the polygonometric network of river banks, according to the results of field experiments, the new version of the developed methodology of the GIS makes it possible to increase the accuracy of measuring horizontal angles and lengths of lines. Significant temperature changes along the water and the coast, on rocks, in the upper layers of sand-concrete pavements are also explained by the properties of the heat and radiation balance.


2020 ◽  
Vol 84 (6) ◽  
pp. 687-692
Author(s):  
I. B. Esipov ◽  
G. V. Kenigsberger ◽  
O. E. Popov ◽  
V. Ya. Poddunyak ◽  
G. V. Soldatov ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Weizhong Lan ◽  
Zhenghua Lin ◽  
Zhikuang Yang ◽  
Pablo Artal

Abstract The relationship between the optical properties of the eye in the periphery and myopia development is still under debate. To further clarify this issue, we provide here baseline data of two-dimensional peripheral optics results in a group of emmetropic Chinese children. Peripheral aberrations were measured under cycloplegia by using an open-view Hartmann-Shack wavefront sensor (VPR, Voptica SL, Spain). This instrument allows to measure fast in the horizontal visual field from temporal 30° to nasal 30° every 1°. Two-dimensional (2D) maps were retrieved from a series of horizonal scans taken every 4° from 20° superior to 16° inferior covering a visual field of 60 × 36°. A relatively homogeneous pattern of the 2D relative peripheral refraction was found across all these emmetropic subjects. Using cluster analysis followed by manual visual refinement, the 2D maps were identified to fit into four categories. More than 70% of the subjects showed a nearly flat horizontal refraction with a slightly myopic shift in the superior retina. Peripheral astigmatism was quite constant across subjects and similar to that expected theoretically. Peripheral aberrations were also similar to those in the fovea for a large retinal area. These baseline data would offer an important reference to compare with the future evolution with time, as well as with other refractive or age groups of subjects, to better understand the role of peripheral optical properties in myopia development.


2019 ◽  
Vol 76 (6) ◽  
pp. 1565-1586 ◽  
Author(s):  
Qingfang Jiang ◽  
James D. Doyle ◽  
Stephen D. Eckermann ◽  
Bifford P. Williams

Abstract Gravity waves are frequently observed in the stratosphere, trailing long distances from mid- to high-latitude topography. Two such trailing-wave events documented over New Zealand are examined using observations, numerical simulations, and ray-tracing analysis to explore and document stratospheric trailing-wave characteristics and formation mechanisms. We find that the trailing waves over New Zealand are orographically generated and regulated by several processes, including interaction between terrain and mountaintop winds, critical-level absorption, and lateral wave refraction. Among these, the interaction between topography and low-level winds determines the perturbation energy distribution over horizontal scales and directions near the wave source, and accordingly, trailing waves are sensitive to terrain features and low-level winds. Terrain-forced wave modes are filtered by absorption associated with directional wind shear and Jones critical levels. The former plays a role in defining wave-beam orientation, and the latter sets an upper limit for the permissible horizontal wavelength of trailing waves. On propagating into the stratosphere, these orographic gravity waves are subject to horizontal refraction associated with the meridional shear in the stratospheric westerlies, which tends to elongate the wave beams pointing toward stronger westerlies and shorten the wave beams on the opposite side.


Sign in / Sign up

Export Citation Format

Share Document