Transcriptional regulatory network topology from statistics of DNA binding sites

2007 ◽  
Vol 386 (2) ◽  
pp. 764-769
Author(s):  
A. Kabakçıoğlu
2017 ◽  
Author(s):  
Jocelynn R. Pearl ◽  
Dani E. Bergey ◽  
Cory C. Funk ◽  
Bijoya Basu ◽  
Rediet Oshone ◽  
...  

AbstractGenetic and genomic studies suggest an important role for transcriptional regulatory changes in brain diseases, but roles for specific transcription factors (TFs) remain poorly understood. We integrated human brain-specific DNase I footprinting and TF-gene co-expression to reconstruct a transcriptional regulatory network (TRN) model for the human brain, predicting the brain-specific binding sites and target genes for 741 TFs. We used this model to predict core TFs involved in psychiatric and neurodegenerative diseases. Our results suggest that disease-related transcriptomic and genetic changes converge on small sets of disease-specific regulators, with distinct networks underlying neurodegenerative vs. psychiatric diseases. Core TFs were frequently implicated in a disease through multiple mechanisms, including differential expression of their target genes, disruption of their binding sites by disease-associated SNPs, and associations of the genetic loci encoding these TFs with disease risk. We validated our model’s predictions through systematic comparison to publicly available ChIP-seq and TF perturbation studies and through experimental studies in primary human neural stem cells. Combined genetic and transcriptional evidence supports roles for neuronal and microglia-enriched, MEF2C-regulated networks in Alzheimer’s disease; an oligodendrocyte-enriched, SREBF1-regulated network in schizophrenia; and a neural stem cell and astrocyte-enriched, POU3F2-regulated network in bipolar disorder. We provide our models of brain-specific TF binding sites and target genes as a resource for network analysis of brain diseases.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Guodong Liu ◽  
David Bergenholm ◽  
Jens Nielsen

ABSTRACT In the model eukaryote Saccharomyces cerevisiae , the transcription factor Cst6p has been reported to play important roles in several biological processes. However, the genome-wide targets of Cst6p and its physiological functions remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. Cst6p binds to the promoter regions of 59 genes with various biological functions when cells are grown on ethanol but hardly binds to the promoter at any gene when cells are grown on glucose. The retarded growth of the CST6 deletion mutant on ethanol is attributed to the markedly decreased expression of NCE103 , encoding a carbonic anhydrase, which is a direct target of Cst6p. The target genes of Cst6p have a large overlap with those of stress-responsive transcription factors, such as Sko1p and Skn7p. In addition, a CST6 deletion mutant growing on ethanol shows hypersensitivity to oxidative stress and ethanol stress, assigning Cst6p as a new member of the stress-responsive transcriptional regulatory network. These results show that mapping of genome-wide binding sites can provide new insights into the function of transcription factors and highlight the highly connected and condition-dependent nature of the transcriptional regulatory network in S. cerevisiae . IMPORTANCE Transcription factors regulate the activity of various biological processes through binding to specific DNA sequences. Therefore, the determination of binding positions is important for the understanding of the regulatory effects of transcription factors. In the model eukaryote Saccharomyces cerevisiae , the transcription factor Cst6p has been reported to regulate several biological processes, while its genome-wide targets remain unknown. Here, we mapped the genome-wide binding sites of Cst6p at high resolution. We show that the binding of Cst6p to its target promoters is condition dependent and explain the mechanism for the retarded growth of the CST6 deletion mutant on ethanol. Furthermore, we demonstrate that Cst6p is a new member of a stress-responsive transcriptional regulatory network. These results provide deeper understanding of the function of the dynamic transcriptional regulatory network in S. cerevisiae .


1993 ◽  
Vol 268 (30) ◽  
pp. 22525-22530
Author(s):  
A Zlotnick ◽  
R.S. Mitchell ◽  
R.K. Steed ◽  
S.L. Brenner

10.1038/ng873 ◽  
2002 ◽  
Vol 31 (1) ◽  
pp. 60-63 ◽  
Author(s):  
Nabil Guelzim ◽  
Samuele Bottani ◽  
Paul Bourgine ◽  
François Képès

Sign in / Sign up

Export Citation Format

Share Document