scholarly journals Multifractal analyses of daily rainfall time series in Pearl River basin of China

2014 ◽  
Vol 405 ◽  
pp. 193-202 ◽  
Author(s):  
Zu-Guo Yu ◽  
Yee Leung ◽  
Yongqin David Chen ◽  
Qiang Zhang ◽  
Vo Anh ◽  
...  
2014 ◽  
Vol 18 (4) ◽  
pp. 1475-1492 ◽  
Author(s):  
J. Niu ◽  
J. Chen ◽  
B. Sivakumar

Abstract. This study explores the teleconnection of two climatic patterns, namely the El Niño–Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in southern China, particularly on a sub-basin-scale basis. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the monthly runoff and soil moisture anomalies for its ten sub-basins are aggregated. Wavelet analysis is performed to explore the variability properties of these time series at 49 timescales ranging from 2 months to 9 yr. Use of the wavelet coherence and rank correlation method reveals that the dominant variabilities of the time series of runoff and soil moisture are basically correlated with IOD. The influences of ENSO on the terrestrial hydrological processes are mainly found in the eastern sub-basins. The teleconnections between climatic patterns and hydrological variability also serve as a reference for inferences on the occurrence of extreme hydrological events (e.g., floods and droughts).


2013 ◽  
Vol 10 (9) ◽  
pp. 11943-11982 ◽  
Author(s):  
J. Niu ◽  
J. Chen ◽  
B. Sivakumar

Abstract. This study explores the teleconnection of two climatic patterns, namely the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD), with hydrological processes over the Pearl River basin in South China. The Variable Infiltration Capacity (VIC) model is used to simulate the daily hydrological processes over the basin for the study period 1952–2000, and then, using the simulation results, the time series of the monthly runoff and soil moisture anomalies for its ten sub-basins are aggregated. Wavelet analysis is performed to explore the variability properties of these time series at 49 timescales ranging from 2 months to 9 yr. Use of wavelet coherence and rank correlation method reveals that the dominant variabilities of the time series of runoff and soil moisture are basically correlated with IOD. The influences of ENSO on the terrestrial hydrological processes are mainly found in the eastern sub-basins. The teleconnections between climatic patterns and hydrological variability also serve as a reference basis for inferences on the occurrence of extreme hydrological events (e.g. floods and droughts).


2010 ◽  
Vol 7 (4) ◽  
pp. 4957-4994 ◽  
Author(s):  
R. Deidda

Abstract. Previous studies indicate the generalized Pareto distribution (GPD) as a suitable distribution function to reliably describe the exceedances of daily rainfall records above a proper optimum threshold, which should be selected as small as possible to retain the largest sample while assuring an acceptable fitting. Such an optimum threshold may differ from site to site, affecting consequently not only the GPD scale parameter, but also the probability of threshold exceedance. Thus a first objective of this paper is to derive some expressions to parameterize a simple threshold-invariant three-parameter distribution function which is able to describe zero and non zero values of rainfall time series by assuring a perfect overlapping with the GPD fitted on the exceedances of any threshold larger than the optimum one. Since the proposed distribution does not depend on the local thresholds adopted for fitting the GPD, it will only reflect the on-site climatic signature and thus appears particularly suitable for hydrological applications and regional analyses. A second objective is to develop and test the Multiple Threshold Method (MTM) to infer the parameters of interest on the exceedances of a wide range of thresholds using again the concept of parameters threshold-invariance. We show the ability of the MTM in fitting historical daily rainfall time series recorded with different resolutions. Finally, we prove the supremacy of the MTM fit against the standard single threshold fit, often adopted for partial duration series, by evaluating and comparing the performances on Monte Carlo samples drawn by GPDs with different shape and scale parameters and different discretizations.


2012 ◽  
Vol 440-441 ◽  
pp. 113-122 ◽  
Author(s):  
Qiang Zhang ◽  
Vijay P. Singh ◽  
Juntai Peng ◽  
Yongqin David Chen ◽  
Jianfeng Li

Sign in / Sign up

Export Citation Format

Share Document