Discussion on the paper “Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions, Nadeem Abbas, S. Nadeem, M.Y. Malik, Physica A 551 (2020) 124083”

2021 ◽  
Vol 574 ◽  
pp. 126019
Author(s):  
Asterios Pantokratoras
Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3291
Author(s):  
Abdul Samad Khan ◽  
He-Yong Xu ◽  
Waris Khan

This study presents the magnetized hybrid nanofluid flow with heat source/sink over an exponentially stretching/shrinking sheet. Slip conditions are implemented to analyze the hybrid nanofluid flow for both slip and no-slip conditions. Additionally, the hybrid nanofluid of alumina and copper (hybrid nanoparticles) with blood (base fluid) has been considered and discussed with both suction and injection parameters. The appropriate similarity variables are used to convert partial differential equations (PDEs) into ordinary differential equations (ODEs) and solved analytically with the help of the homotopy analysis method (HAM). The impact of different embedded parameters has been shown in the form of graphs and tables. The numerical values of skin friction and Nusselt number are presented in the form of Tables for both slip and no-slip cases. It is summarized that the upsurge of the velocity slip parameter and magnetic parameter increases the skin friction, while the rising of the thermal slip parameter and heat generation parameter decreases the Nusselt number.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260854
Author(s):  
Muhammad Ramzan ◽  
Abdullah Dawar ◽  
Anwar Saeed ◽  
Poom Kumam ◽  
Wiboonsak Watthayu ◽  
...  

The present study is related to the analytical investigation of the magnetohydrodynamic flow of Ag − MgO/ water hybrid nanoliquid with slip conditions via an extending surface. The thermal radiation and Joule heating effects are incorporated within the existing hybrid nanofluid model. The system of higher-order partial differential equations is converted to the nonlinear system of ordinary differential equations by interpreting the similarity transformations. With the implementation of a strong analytical method called HAM, the solution of resulting higher-order ordinary differential equations is obtained. The results of the skin friction coefficient, Nusselt number, velocity profile, and temperature profile of the hybrid nanofluid for varying different flow parameters are attained in the form of graphs and tables. Some important outcomes showed that the Nusselt number and skin friction are increased with the enhancement in Eckert number, stretching parameter, heat generation parameter and radiation parameter for both slip and no-slip conditions. The thermal profile of the hybrid nanofluid is higher for suction effect but lower for Eckert number, stretching parameter, magnetic field, heat generation and radiation parameter. For both slip and no-slip conditions, the hybrid nanofluid velocity shows an upward trend for both the stretching and mixed convection parameters.


2021 ◽  
Vol 66 (2) ◽  
pp. 1963-1975
Author(s):  
Liaquat Ali Lund ◽  
Zurni Omar ◽  
Sumera Dero ◽  
Yu-Ming Chu ◽  
Ilyas Khan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document